
AD- 1A27227

i" !lfAfllV]

au



On the Cover

0 A SYNTHE IIC-APERTURE RADAR (SAR) EDITORIAL BOARD

image of a golf course in Stockbridge, New
York was collected by the Lincoln Labora- Roger W. Sudbury, t HAIR

tory K,-band airborne radar, which Peter E. Blankenship

transmits and receives horizontally and (;harles F. Bruce

vertically polarized signals to produce three Vincent W.S. Chan

unique polarimetric images (HH, HV, and John C. Fielding

VV) of a scene. The polarimetric images are Herbert Kiciman

combined by using the polarimetric John A. McCook

whitening filter, which reduces the speckle Ivars Melngailis

inherent in high-frequency SAR imagery. Antonio F. Pensa

Two-by-two noncoherent averaging of the John A. Tabaczynski

data reduces the speckle further. The lee 0. Upton

combination of polarimetric whitening and
noncoherent averaging produces a SAR EDITORIAL STAFF

image with near-optical quality (see the
optical photograph below for comparison). Jack Nolan, i)i i0R-I\-(mi I
Unlike optical sensors, however, the S \R Dan E. D)udgeon, ,Nt.LII DI I )IR
can produce high-quality imagery day or Richard T. Lacoss, (t'i I [ ii•t)wl
night, under all conditions, including Alden M. Havashi, IMINE .51 -DI R

through dense clouds or smoke. Randall Warmiers, I v (INkAl )N1OR

The SAR data were collected from a Leslie Safford Spireo, (oy I r iOR
range of 7 km at a depression angle of 20'. Patricia L. Macl)onald, SLBIIQIRIION "OORDINA ItoR

Range in the SAR image increases from top
to bottom; therefore, the radar shadows of PRODUCTION STAFF

trees and other objects extend toward the
bottom of the image. Some features visible Claude A. French, Jr.,t'II•RIU O. \ io ANsA(.IR

in this image are a street, a parking lot, the Patricia Kennedy Graham, .. sss•clu 'r IiII(AIIONS. M,\NAI.IR

golf-course club house, a putting green Jonathan C. Barron, VI.10 100011 It R

adjacent to a water hazard, and a fairway to Mary E. Bourquin, IO((!-'tIN1 (OORDlNA IO

the right of the water hazard. Kathleen L. Coy, HAD) ECt• IC: , AR,, I IS

A large database of tactical target Richard B. Doubleday,I I-CHNICAL A I h

imagery and Stockbridge clutter imagery Paula M. Gentile, Ir: R ICAI AR15[

has been used to develop and test automatic Allene T. Shimomura, •ROO[ RI. ANR

target recognition algorithms. The article
entitled "Performance of a High-Resolution TiE LININSIN LABORATORY JOURNAl. (ISSN 0896-4130) is published
Polarimetric SAR Automatic Target

Recognition System," by Leslie M. Novak, by coin liaoratory, Massachusetts lnstitte oflchnolog,,
Gregory J. Owirka, and Christine M. 244 Wood St., Lexington, MA 02173-9108. Subscriptions are tree

Netishen, presents an overview of an end- of charge, but provided only to qualified recipients (government

to-end automatic target recognition system employees and contractors, libraries, university facultY, and R & I)

and a summary of the performance results laboratories). Requests for individual copies, subscriptions, or

of the recognition algorithms, permission to reprint articles should be submitted to the Sub-
scription Coordinator, Room A-222. at the above address.

Phone (617) 981-7026, or iournal(aIfl.mit.edu on Internet e-mail.

The work reported in this journal was perfoirmed at Lincoln

Laboratory, a center for research operated by Massachusetts Institute
of Technolog'. The views expressed in this journal are those of the

authors and do not reflect the official policy or position of the

United States Government.

Postmaster: Please send address changes to the above address.

01993 by lincoln laboratory, Massachusetts Institttte of

Technology. All rights reserved.



DISCLAIMEl NOTICE

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
COLOR PAGES WHICH DO NOT

REPRODUCE LEGIBLY ON BLACK

AND WHITE MICROFICHE.



MASSACHUSETTS INSTITUTE OF TLiINOLOGV

LINCOLN LABORATORY Journal SPRING 1993, VOLUME 6, NUMBER I

An Overview of Automatic Target Recognition
Dan F. l)udueon and Richard 1: Lacoss

In this article we introduce the subject ofautornatic target recognition (AT'R). Interest in AIR is increasing in the
deflnse community as the need for precision strikes in limited war(are situations becomes an increasingly important
part of our defense posture. We discuss the difficulty of the ATR problem and we survey the variety of approaches that
try to solve the problem. We conclude by introducing the other articles in this issue of the Lincoln Laboratoryjourncd.

i I Performance of a High-Resolution Polarimetric SAR Automatic Target Recognition System
Leslie Al. Novak, Gregor. I. Ouirka, and Christine AT. Netishen

Lincoln Laboratory is investigating the detection, discrimination, and classification ofground targets in high-resolution,
fully polarimetric, synthetic-aperture radar (SAR) imagery. This article summarizes our work in SAR AI'R by discussing
the prescreener, discrimination, and classification algorithms we have developed. The prescreener required a low
threshold to detect most of the targets in the data. which reiult-,d in a high density of false alarnms. The discriminator
and cLissitier stages then reduced this false-alarm density by a factor of 100. We improved target-detection performance
by using fully polarimetric imagery processed by the polarimetric whitening filter (PWF), rather than by using single-
channel imagery. The PWF-processed imagery improved the probability of correct classification in a four-class classifier.

25 Discriminating Targets from Clutter
Danie/ E Kreithen, h5au'n D. Ha/versen, and Gregorj. Owirka

The Lincoln L.aboratory multistage target-detection algorithm for SAR imagery can be separated into three stages: the
prescreener, the discriminator, and the classifier. In this article, we examnine fifteen features that are used in the
discrimination algorithm. The set of best features from this pool of fifteen was determined by a theoretical analysis, and
was then verified by using real SAR data. Performance was evaluated for a number of different cases; in all cases the
theoretical performance analysis closely matched the real data performance. In addition, we formulate a set of criteriia
for best feature choice that apply to quadratic discrimination algorithms in general.

53 Improving a Template-Based Classifier in a SAR Automatic Target Recognition
System by Using 3-D Target Information
S/hawn Al. Verbout, William W h'ving, and Amanda S. Hanes

We propose an improved version of a conventional template-matching classifier currently used in an operational ATR
system f`or SAR imagery. This classifier was originally designed to maintain a library of 2-I) refbrence images firmed at a
variety of radar viewing directions. The classifier accepts an input image ofa target ofunknown type, correlates this
image with a reference template selected from each target library, and then classifies this image to the target category
with the highest correlation score. The algorithm produces surprisingly poor classification results for some target types.
however, because ofdifferences in SAR geometry between the input image and the best-matching reference image. We
correct this deficiency by incorporating a model-based reference generation procedure irto the original classifier.

77 Neural Systems for Automatic Target Learning and Recognition
Allen M. Wzx'man, Michael Seibert, Ann Marie Bernardon, and David A. Fly

We have designed and implemented several computational neural systems for the automatic learning and recognition of
targets in both passive visible and synthetic-aperture radar (SAR) imagery. Motivated by biological vision systems (inl
particular, that of the macaque monkey), our computational neural systems employ a variety of neural networks. In this
article we present an overview of our research for the pa.,t several years, highlighting our earlier work on the
unsupervised learning of three-dimensional objects as applied to aircraft recognition in the passive visible domain, the .......-............
recent modification of this system with application to the learning and recognition of tactical targets from SAR imagery,
the ftirther application of this system to reentry-vehicle recognition from inverse SAR, or ISAR, imagery, and the
incorporation of this recognition system on a mobile robot called the Mobile Adaptive Visual Navigator (MAVIN) at
L.incoln Laboratory. ,cies
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ii7 Multidimensional Automatic Target Recognition System Evaluation
I•aul/. Atdodzy

We are developing an evaluation facility that includes an electronic terrain board (EFIB t) provide an ef.tete test
environment for ATR systems. I'he input to the FI'B is very high-resolution data taken in the modalities of interest
(lasci radar, passive IR, and visible). "lhe ETB contains sensor and target models so that measured imagery can bc
modified for sensitivity anal'ses. The evaluation flicility also contains a reconfigurable suite of ATR algoritbhts that Lan
be interficed to real and synthetic data for developing and testing ATR modules. This article presents a description of
the infrared airborne radar used to gather sensor data, a discussion of sensor fusion and the hybrid AIR mieasuremenit
system, and a review of the ATR evaluation facility. We give results of processing real and synthetic imagery with the
AI+R system, with an emphasis on interpreting results with respect to sensor design.

147 An Efficient MRF Image-Restoration Technique Using Deterministic
Scale-Based Optimization
Alumali Al. Atenon

A method for performing piecewise smooth restorations on images corrupted with high levels of noise has been
developed. Based on a Markov Random Field (MRF) model, the method uses a neural network sigmoid nonlinearity
between pixels in the image to produce a restoration with sharp boundaries while providing noise reduction. [*he model

equations are solved with the Gradient Descent Gain Annealing (GI)GA) method-an efficient deterministic search
algorithm that typically requires fcwer than 200 iterations for image restoration when implemented as a digital
computer simulation. A novel feature of the GDGA method is that it automatically develops an annealing schedule by
adaptively selecting the scale step size during iteration.

161 Machine Intelligent Automatic Recognition of Critical Mobile Targets in Laser Radar Imagery
Richard L. Delanoy Jacques G. Verly, and Dan F. Dutdqeon

A variety of machine intelligence (Mil) techniques have been developed at Lincoln laboratory to increase the
performance reliability ofautomatic target recognition (ANR) systems. Useful for recognizing targets that are only

marginally visible (due to sensor limitations or to the intentional concealment of the targets). these Ml techniques have
become integral parts of the Experimental larger Recognition System (XTIRS)-a general-purpose system for model-
based ATR. Using laser radar images collected by an airborne sensor, the prototype system recognized a variety of semi-

trailer trucks with high reliability, even though the trucks were deployed in high-clutter environments.

187 Machine Intelligent Gust Front Detection
Richard L. l)elanoy aind Seth •" 7o.vel

"Techniques of low-level machine intelligence, originally developed at i.Incoln Laboratory to recognize military ground
Vehicles obscured by camouflage and foliage, are being used to detect gust fronts in Doppler weather radar imnagery.
This Machine Intelligent Gust Front Algorithm (MIGFA) is part of a suite of hazardous-weathcr-detcction functions
being developed under contract with the Federal Aviation Administration. MIIGFA has demonstrated levels ot'detectioni
perfbrmance that have not only markedly exceeded the capabilities of existing gust front algorithms, but that are
competitive with htinan interpreters.

213 Extracting Target Features from Angle-Angle and Range-Doppler Images
Sit Alay H.,u

For diffuse targets, features such as shape, size, and motion can be determined from a time series of images from either

angle-angle passive telescopes or range-Doppler radars. The extracted target features can then be used for automated
target recognition and identification. Ati algorith that uses sccne-analysis techniques has been developed to perform

the featire extraction.



An Overview of Automatic
Target Recognition
Dan E. Dudgeon and Richard TL Lacoss

U In this article we introduce the subject of automatic target recognition
(ATR). Interest in ATR is increasing in the defense community as the need for
precision strikes in limited warfare situations becomes an increasingly important
part of our defense posture. We discuss reasons for the difficulty of the ATR
problem and we survey the variety of approaches that try to solve the problem.
We conclude by introducing the remaining articles in this special issue of the
Lincoln Laboratory Journal.

A UITOMTIC TARGET RECO(GNITION (AFR) gen- tions of target, noise, and clutter depend upon the

erally refers to the use of computer pro- application. larget categories can be coarse (e.g., trr
cessing to detect and recognize target signa- treaded ground vehicle) or fine (e.g., a specific type of-

tures in sensor data. The sensor data are usually an tank or even a specific tank). Often the term ('lass{]ifl-
image f rom a ftrward-looking infrared (FHIR) cam- tion is used for coarse categorization and the term
era, a synthetic-aperture radar (SAR), a television cam- identi/,icaion is used for fine categorization, although
era, or I laser radar, although ATR techniques can be they are also used synonymously with the term r'cog-
applied to non-imaging sensors as well. ATR has be- nition. Unfortunately, usage is not consistent.
come increasingly important in modern defense strat- Clutter refers to real things that are imaged (build-
egy because it permits precision strikes against certain ings, cars, trucks, grass, trees, and other objects) but
tactical targets with reduced risk and increased effi- are not targets of interest. Sometimes a distinction is
ciencv, while minimizing collateral damage to other made between naturally occurring clutter (grass, trees,
objects. If computers can be made to detect and topographical features) and man-made cultural cLit-
recognize targets automatically, the workload of a ter (buildings, vehicles, and other works). Clutter
pilot can be reduced and the accuracy and efficiency tends to dominate the imagery simply because targets
of the pilot's weapons can be improved, are generally sparse compared to the environment in

AIR technology can also be applied to non-mili- which they operate. Noise refers to electronic noise in
tary problems as well. For example, the problem of the sensor as well as inaccuracies introduced in the
recognizing landmarks seen by a visual navigation computations by a signal processor. Depending on
system or a robotic system is related to the ATR the ATR application, the problem may be one of
problem. The recognition of particular objects or faces extracting a signal from noise or it may be one of
in photographs or video sequences is also related to separating a target from its surrounding clutter.
AIR. We can think of the ATR problem as one part The distinction between detection and recognition
of the general problem of machine vision; namely, is ill defined. We could argue that recognition is just
how can computers be made to do what we humans the detection of a specific target type. But algorithms
do so easily and naturally? developed from this viewpoint tend to require pro-

The fundamental problem of AIR is to detect and hibitive amounts of processing. For this reason, ATR
recognize objects of interest (targets) in an environ- systems generally include a front-end detection stage.
ment of clutter imaged by an imperfect sensor that [he goal of the detection stage is to eliminate most of
introduces noise into the resulting signal. The defini- the sensor data from further consideration without
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FIGURE 1. Conceptual data flow in automatic target recognition (ATR) systems. Simple detection algorithms
are applied to all the sensor data to isolate small portions that might contain targets. More complex recogni-
tion algorithms then process the selected portions of the data to reject non-target clutter and classify targets.
Ideally, all targets of interest pass through the pipeline and are included in the output target list.

eliminating in,- ofthe targets ot'interest. InI this con- meadow, a trcellne, a forest road, a fcaturclcss desert,
text, the term detection means that sonicthing inter- or an 1Urban area. Such complicated variations inI both

csting has been discovered, and this discovery requires target signature and background clutter contribute
furthcr analhsis. For example, a small cluster of bright significantly to the difficulty of the AIR problem.
pixels in an image could indicate the presence of an
object. ( 'niptrationally simple detection algorithms ATR Technology
are required at this stage because all the sensor data in Many technologies and techniques are utilized in at-
the input imatge must be exammined. tcmpting to solvc the problems of ATR, as illustrated

Practical Implementations of ATR systems can be in Figure 2. Sensor technology is critical because per-
viewed as pipeline processing systems, as illustrated in formance is ultimately limited by the qualit' of the
Figure I . ldcallh, all targets of interest pass through information provided by the sensors. Processing hard-
the pipeline and are included in the output target list. ware is also critical because ATR algorithms must
As data move through the pipeline, the processing process large quantities of data, often in real time, and
algorithms become more target specific and compu- because system development can be signiflcantly hin-
rationally intensive for each data item, While the nmii- dcred by the lack of processing capacity. Sofrwarc,
bcr of data items processed and the number of'clutter simulation, and evaluation methodologies and tools
false alarms each decreases. Even with this structure, are also important elements. In addition, inm)portant
the front-end detection stages of the processing pipe- but indirect contributions are nmade by" neural and
line often require the most computational power be- cognitive sciences, statistics, and sensor physics.
cause the ATR system must search large amounts of FigiUre 2 also identifies several algorithmic ap-
iniagcrv to find a f|ew instances of the target. proaches to the problem of ATR; the multiplicity of

For a specific ATR problem, both the target signa- these approaches indicates that no satisflactory single
turCs and the clutter background can vary. In thermal approach has vet bccn tound. The most successful
images, for example, a tank can be hotter or colder ATR systems will probably blend several algorithmic
than its background (causing positive or negative ther- techniques to get satisfactory performanIce.

meal contrast). It can also exhibit one shape when
v\ieCed f'romn the side aind ano|ther shape when s'wwt'd Ittr,'ctioii Itcorj,
from the front; its turret can bc rotated to anly posi- ATR is based in part on detection theory and related

tion and its gun barrel call take oil a ranlge ofclcvation1 statistical ideas that datc back to the carly days of'
an glcs. lhc background clIittcr Canl he .1 a bcnligIll radar processinrg. If'.m target signatulrc is del er lllii', ili .
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or if it is stochastic with well-defined stationary statis- signatures and clutter signatures so that they can be

tics, and if the clutter is well characterized as a station- distinguished by a simple statistical test.
ary random process, then optimal detection tech- A seductive aspect of the detection-theory approach
niques such as the matched filter can be derived. In is that it provides a firmn theoretical foundation tor
classical detection-theory problems, a trade-off exists both the development of algorithms and the under-
betwccn the probability of detecting a target signature standing of their performance. This approach to ATR,
when the target is there, and the probability ofdeclar- however, requires valid and analytically (or computa-
ing that a target is present when ;•: fact it is not there tionally) tractable statistical models for both targets
(i.e., a false alarm). The objective of optimal detection and clutter. Such models are difficult to develop, and
processing is to separate the distributions of target this approach is greatly complicated by signature and

sciences

Imagetands c Detection
signal theory

rueoT pprocessinens

Simulation Pater
and clssfiattern

evaluation r activitiei.

Sensor Artificiral
technology / neuwral

(Processor, •( intelligecan

technology model-based
Sensor Software \methods/ Neural and
physics . tools and• cognitive

and models techniques sciences

FIGURE 2. ATR technologies and processing methods. The circles identify some of the technologies and methods that are
required to solve difficult ATR problems, although not all technologies and processing methods are used in all cases. The

three boxes show some of the basic supporting research activities.
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clutter variability. Detection theory is conceptually the flexibility and robustnesIs of the human i\lisal

appealing, but it has had only limited success for ATR system in a piece oftequipment.

problems. In the nearer term, neural networks can have imple-
mentation advantages because they are highly paral-

]itt'rn Rec'onitiw, lei, and their ability to learn by example can make

Pattern recognition is the most mature approach used them capable of discovering and using signature dif
for ATR applications. larget-signiaturc representation ferences that distinguish different types of targets.

options range from two-dimensional image templates Neural networks are a type of nonlinear processing

to lower-dinmensional vectors of features that are de- that could have advantages over classical detection-

signed to be differentially sensitive to targets and non- theoretic techniquIes or patcrn-recognition techniques.

targets. Recognition depends on feature vectors (or One challenge for neural network approaches is to

templates thou~ght ofas vectors) fo r targets clustering achieve good performance over the entire range of

toge.her and being distinct from non-target clusters, target signatures and background-clutter conditions,

Potential targets (detections) are confirmed by comn- given limited training data.

paring target images or feature vectors with a database Neural network learning can be categorized as su-
of tartet and non-target exemplars. Recognition con- pervised or unsupervised. Supervised networks are

sists of selecting the best match between the target trained by using independently classified images or

data and the exemplar database. The matching crite- feature vectors. Training typically consists of comput-
ria nma' be ad hoc (e.g., nmean-square differences be- crized adIustment of parameters to optimize perfor-

twccn data and exemplar vectors), or they may be mance on the training set. Performance on new data

based on statistical assumptions that give the appear- depends on hows well the training data are classified

ante of a more rational basis. and how representative they are. U11St~pcrviscd tat-
Pattern recognition is not disjoint foro the detec- works define their own internal classifications of data.

tion-thcory approaches discussed above or from the independent of the external source. Data are clustered

artificial neural network approaches discussed below, together if they look similar to other members of the
A close functional similarity exists between template cluster. When new data are not similar enou1gh to anl

(or feature vector) matching and matched filtering; existing cluster, a new cluster is formed.
differences between the two are at a more detailed Unsupervised networks, however, ultimately require

lewl. D(!:!etion theory emphasizes ontimal (or near- supervised training to perform useful recognition. A
Optimal) algorithms that arc derived bv using statisti- targct class must be associated with each Internal

cal models of raw data. Pattern recognition, which cluster learned by the network. Tvpically; a cluster is

also relies heavily on statistics, includes more ad hoc assigned the target name corresponding to the major-
approaches (e.g.. spectral coefficients, fractal dimen- itv (or even plurality) of training examples i the

sions, and blob aspect ratios), especially ii, the defini- cluster. This training is often an iterative process in

tion and extraction of the features used to character- which parameters of the tl[supei ised jnCLdok arc

ize targets. adjusted by the ATR algorithm developer until each
of its clusters tends to be dominated by only one

Arti. cial Neural Networks target type. Multiple clusters of data can be assigned

The neural network approach places even more cm- the same target type.
phasis upon experiential Icarning-by-exanmple than

does the pattern recognition approach. Neural net-

works represent a processing paradigm motivated by The genesis of model-based target-recognition nieth-
the human visual system, which remains the most ods is in artificial intelligence as it is applied to image
flexible and robust target-recognition system for irn- understanding. TWo characteristics ty'pikv the model-

agery that we know. "'hc goal of neural network ap- based approach: (1) matching of processed sensor

proachcs is to develop an arclhitecture that reproduces data to predictions based on hypotheses concernin1g
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the target type, pose, and rf.g,. and (2) matLhing of representation that is convenient for matching. This
processed sensor data on the basis of multiple local- approach is time consuming, and consequent]- there
ized features. is a need to build models automatically from data.

The difference between model-based target fLca- For example, the radar image-understanding systeem

tures and the feature vectors of other approaches is discussed in an earlier article in the Lincoln L.iaon,awr

important. The elements of feature vectors are not lournal can build target models of reentry vehicles
features in the model-based sense. Corners, bright from radar data [ I ]. (Note that a system does not have
points, line segments, and small regions correspond- to be a neural network to be capable of learning from
ing to identifiable parts of a target (e.g., the gun, data.)

turret, or body of a tank) might be features for a
model-based system. Recognition depends on match- Iar Requi,',enzs br , TR .S',tem I,'do/,ncr

ing parts and interrelationships between the parts. AIR system development and evaluation requires an
Flexible and sophisticated matching techniques can enormous quantitv of data because of the variability
be used, in principle, to design systems that are more in target signatures and background clutter. The as-
robust with regard to obscuration and target variabil- semblv of large, realistic, experimental databascs, how-
ity. In contrast, the elements of feature vectors are ever, is time consuming and exp'ensive. As a srest,t., \C
usually global target measures such as the coefficients need to develop techniques that minimize data rc-
of a transform that represents the target image or a quirementis or, to put it differcntly, utilize expcrimen-
texture measure such as fractal dimension. tal data more effCctively. Simulation is one such ap-

In some sense, every ATR algorithm is model based proach; limited experimental data can be used to

because every algorithm makes and uses a priori as- develop and validate simulation models that can dtcn
sumptions about target and clutter characteristics, be used to generate data for system developmcnt and
The representation of the a priori information can evaluation.
vary widely, however, and it is conceptually different If the statistics of a target signature can be modeled

for model-based and non-model-based approaches. parametrically, then a small amount of expcrimnental
Generally, in model-based target recognition the ap- data might be used to determine the model param-
pearance of the target in an image is modeled. etcrs. Another approach is to develop physical models

The search-and-match approaches of model-based of image formation and use them to create synthetic

methods also tends to distinguish them from other target signatures in both real-clutter and synthetic-
algorithmic approaches. The general paradigm is as clutter backgrounds. This approach doesn't reduce
follows: first form an initial set of hypotheses based the need for data: it simply allows us to create the data
on the sensor data (the indexing problem), then use in a computer rather than collect real data with a real
the hypotheses to predict features and their relation- sensor observing real targets in real backgrounds in all
ships, and finally compare the predictions to features their various states. Of course, the synthetic imagery
extracted from the data. This approach is quite differ- m,'st be realistic to be useful, and realism is deter-
ent from conducting a computationally intensive ex- mined by comparing the synthetic data to a real data-
haustive search for a best matching pattern, base. Fortunately, both model development and svn-

Continuing areas of research in model-based target thetic scene generation are done off line, so that
recognition include matching and evidence accumu- real-time performance is not required. But the issue

lation (i.e., what is the most robust way to match of how to develop and evaluate ATR systems in a
hypothesized signatures to the sensor data), indexing reasonable amount of time with a reasonable amount
(how to generate a small number of hypotheses that of data is still open.

contain the correct target), and modeling. In some
systems the models are built by hand; that is, analysts In This Issue
examine sensor data, observe target signature charac- We are fortunate at lincoln Laboratory to have sev-
teristics, and encode them into some form of data eral state-of-the-art sensors for collecting data that
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Performance of a
High-Resolution Polarimetric
SAR Automatic Target
Recognition System
Leslie M. Novak, Gregory J. Owirka, and Christine M. Netishen

U Lincoln Laboratory is investigating the detection, discrimination, and
classification of ground targets in high-resolution, fully polarimetric, synthetic-
aperture radar (SAR) imagery. This papei summarizes our work in SAR
automatic target recognition by discussing the prescreening, discrimination, and
classification algorithms we have developed; data from 5 km2 of clutter and 339
targets were used to study the performance of these algorithms. The prescreener
required a low threshold to detect most of the targets in the data, which resulted
in a high density of false alarms. The discriminator and classifier stages then
reduced this false-alarm density by a factor of 100. We improved target-
detection performance by using fully polarimetric imagery processed by the
polarimetric whitening filter (PWF), rather than by using single-channel
imagery. In addition, the PWF-processed imagery improved the probability of
correct classification in a four-class (tank, armored personnel carrier, howitzer,
or clutter) classifier.

HE ARPA-SPONSORED WARBREAKER program is tion, and classification (see Figure 1). In the pre-

a broad-based advanced technology program screening stage, a two-parameter constant-false-alarm-
to develop new weapons technology that can rate (CFAR) detector selects candidate targets in a

locate and destroy critical mobile targets such as SCUD SAR image by examining the amplitude of the radar
launch systems and other highly mobile platforms. signal in each pixel of the image. In the discrimina-
Automatic target recognition (ATR) is an important tion stage, a target-sized 2-D matched filter accu-
candidate technology for this effort. To address the rarely locates the candidate targets and determines
surveillance and targeting aspects of the Warbreaker their orientation. Then texture-discrimination features
program, Lincoln Laboratory has developed a com- (standard deviation, fractal dimension, and weighted-
plete, end-to-end, 2-D synthetic-aperture radar (SAR) rank fill ratio) are used to reject natural-clutter false
ATR system. This system requires a sensor that can alarms [1]. In the classification stage, a 2-D pattern-
search large areas and also provide fine enough resolu- matching algorithm rejects cultural-clutter false alarms
tion to detect and identify mobile targets in a variety (i.e., man-made objects that are not targets) and clas-
of landscapes and deployments. sifies the remaining detections by target type (tank,

The Lincoln Laboratory ATR system has three armored personnel carrier, or howitzer).
basic stages: detection (or prescreening), discrimina- To evaluate the performance of the ATR system,
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Input 1 Prescreener Discriminator ssifier targes
image targets

Rejects imagery without Rejects natural-clutter Rejects man-made
potential targets false alarms clutter

FIGURE 1. Block diagram of the SAR automatic target recognition system. The prescreener locates candidate targets

based oil the brightness of pixels in the input image, the discriminator rejects natural-clutter false alarms, and the classifier
rejects non-target cultural clutter and classifies targets by vehicle type.

WC used high-resolution ( 1 ft by I ft), fully polarimet- as the pond) are sharper. As a result, PWF-proccssed
tic target data and clutter data gathered by the Lin- imagery is visually clearer than single-polarimetric-
coin Laboratory millimeter-wave SARP 121 at a depres- channel imagery. In addition, PWF-proccssed imua-
sion angle of 22.5' and a slant range of 7 kim. We cry improves the performance of all three stages of the
demonstrated the robustness of the ATR system by AT.R system (compared with the perfrmnance achieved
testing it against targets both with and without radar by uising single-polarimetric-channel imagery) because
canlotilage. PVT processing reduces clutter variance and enhances

Figure 2 is an example of the quality of the imagery target signatures relative to the clutter background.
gathered by the Lincoln Laboratory SAR. In this This article begins with an overview of the three
image of a golf course in Stockbridge, New York, the stages of the baseline ATR system. Next we describe
high resolution of the SAR resolves individual trees the perfoirmance of the ATR system with both cam-
and bushes as well as small objects such as the flagpole ouflaged and uncamouflaged targets, and then w\e
located in the center of the putting green. This par- compare performance using PWF data with perfor-
ticular SAR image was obtained under clear weather mance using single-channel (HH) data. We also
conditions, the quality and resolution of the image present details of the three discrimination features
would not have been degraded, however, iy dense fog used in our studies, with particular emphasis on the
or thick cleud cover. Thus a SAR sensor has a signifi- fractal-dimension fecature. Finally, we discuss fulture
cant advantage over optical sensors. SAR image qual- improvements to the discrimination and classifica-
it\ is not dependent on weather conditions, and the tion stages.
sensor can be used at any time of day or night. In

addition, SAR sensors can perftrm other tasks, stuch Overview of the Baseline ATR System

as searching large areas from a long distance. This section describes our three-stage baseline SAR
The image in Figure 2 was constructed from fulhl ATR system, which is illustrated in Figure 1 by a sim-

polarimetric SAR data that were processed with a plified block diagram. The three stages-prescreener,
technique known as the polarimetric whitening filter discriminator, and classifier-are described below.
('XWF) [31. PWF processing optimally combines the
HH (horizontal transmit, horizontal receive), HV St, 1: 1rescreem'r

(horizontal transmit, vertical receive), and VV (verti- In the first stage of processing, a two-parameter (FAR
cal transmit, vertical receive) polarization components detector 141 is used as a prescrecner; this stage of
of the radar return. This polarimctric combination processing identifies potential targets in the image on
enhances the quality of the imagery in two ways: the basis of radar amplitude (i.e., by searching for
I1) the amount of speckle in the imagcry is mini- bright returns). Computation time for this stage of

mizcd, and (2) the edges of objects in the image (stuch processing is significantly reduced by operating tile

12
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detector at a reduced resolution (1 m by I m) rather and KCFAR is a constant threshold value that defines
than at the full resolution (1 ft by 1 ft). the false-alarm rate. As shown in the figure, the test

Figure 3 is a sketch of the two-parameter CFAR cell is at the center of a defined local region, and the
detector used by the prescreener; the detector is de- 80 cells in the boundary stencil are used to estimate
fined by the rule the mean and standard deviation of the local clutter.

The guard area ensures that no target cells are in-
X, K ,ag. cluded in the estimation of the clutter statistics. If the

targetdetection statistic calculated in Equation 1 exceeds

X,- (1) K-FAR,, the test cell is declared to be a target pixel; if
:, KCFAR • clutter, not, it is declared to be a clutter pixel.

When the amplitude distribution of the clutter is
where X, is the amplitude of the test cell, j,. is the Gaussian, the CFAR detector provides a constant
estimated mean of the clutter amplitude, 5,. is the false-alarm rate for any given K'FAR 151. Because the
estimated standard deviation of the clutter amplitude, clutter distributions of high-resolution data are typi-

FIGURE 2. High resolution (1 ft by 1 ft) synthetic-aperture radar (SAR) image of a golf course near Stockbridge,
New York. Polarimetric whitening filter (PWF) processing was used to produce this minimum-speckle image.
The radar is located at the top of the image; therefore, the radar shadows go toward the bottom of the page.
Notice that the SAR can resolve details as small as the flagpole in the putting green near the center of the image.

VOd.f 6 ,I.VBR ' '910 ti COL\0 tABORAIOR, jOR1 A. 13
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I full resolution (I ft by I ft). The goal of discrimina-

tion processing is to reject the regions containing

natural-clutter false alarms while accepting the re-
-- gions containing real targets. This stage consists of

Guard area - three steps: (1) determining the position and orienta-

-_ tion of a detected object, (2) computing simple tex-

..- tural features, and (3) combining the features into a

! - discrimination statistic that mcasures how targetlikc

the detected object is.
-- In the first step of the discrimination stage the

Ts- algorithm determines the position and orientation of
-Test cell Target -- the target by placing a target-sized rectangular temn-

plate on the image. The algorithm then slides and

"rotates the template until the energy within the tern-

plate is maximized. The position estimate produced

- in the discrimination stage is more accurate than the
I position estimate produced in the prescreening stage.

FIGURE 3. The prescreener CFAR detector. The ampli- This operation is computationally feasible because it

tude of the test cell is compared with the mean and stan- is performed only on the selected high-resolution re-
dard deviation of the clutter. The boundary consists of 80 gions of interest passed by the prescreener, and not on
cells that are used for clutter statistics estimation. Each the entire image. Mathematically, this operation is

cell in the boundary consists of 16 raw pixels that are equivalent to processing the data in the region of
noncoherently averaged. The guard area ensures that no 0

target cells are included in the clutter statistics estimation. interest with a 2-D matched filter for the case when

the orientation of the target is unknown.

cally not Gaussian 161, however, the detector does not In the second step of the discrimination stage the

always yield a constant false-alarm rate. In spite of algorithm calculates three textural features: (1) the

this fact, the detector given by, Equation 1 still proves standard deviation of the data within the target-sized

to be an effective algorithm for detecting targets in template, (2) the fractal dimension of the pixels in the
clutter, region of interest, and (3) the weighted-rank fill ratio

Only those test cells whose amplitudes stand out of the data within the template. The standard devia-
from the surrounding cells are declared to be targets. tion of the data within the template is a statistical

The higher we set the threshold value of KvFAlt, the measure of the fluctuation of the pixel intensities:

more a test cell must stand out from its background targets typically exhibit significantly larger standard

for the cell to be declared a target. Because a single deviations than natural clutter. The fractal dimension

taiget can produce multiple CFAR detections, the of the pixels in the region of interest provides infor-

detected pixels are clustered (grouped together) by mation about the spatial distribution of the brightest

the detector if they are within a target-sized neighbor- scatterers of the detected object. It complements the

hood. Then a 120-ft-by-120-ft region of interest of standard-deviation feature, which depends only on

full resolution (1 ft by I ft) data around each cluster the intensities of the scatterers and not on their spatial

centroid is extracted and passed to the discrimination locations. The weighted-rank fill ratio of the data
stage of the algorithm for further processing. within the template measures the fraction of the total

power contained in the brightest 5% of the detected

Stage 2: D~iscriminator object's scatterers. For targets, a significant portion of

The discrimination stage takes as its input the I 20-ft- the total power comes from a small number of very
by-120-ft regions of interest passed to it by the bright scatterers; for natural clutter, the total power is
prescreener, and it analyzes each region f interest at distributed more evenly among the scatterers.
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In the third step of the discrimination stage the spotlight-mode images of a target collected at 1 in-
algorithm combines the three textural features into a crements of azimuth, yielding 72 smoothed images of
single discrimination statistic; this discrimination sta- each of the targets. Figure 4 shows typical pattern-

tistic is calculated as a quadratic distance measure- matching references for the three targets at a particu-
menrt (see the accompanying article entitled "Dis- lar aspect angle.
criminating Targets from Clutter" by Daniel E.
Kreithen et al.). Most natural-clutter false alarms have Performance of the Baseline ATR System
a large quadratic distance and are rejected at this This section describes the performance of the pre-
stage. Most man-made clutter discretes (such as build- screening, discrimination, and classification stages of
ings and bridges) pass the discrimination stage; there- the baseline SAR ATR system. Clutter data from 5
fore, the next stage-the classifier stage-must have km 2 of ground area were processed through the ATR-

the ability to reject them. system algorithms, along with data for 162 camou-
flaged targets and 177 uncamouflaged targets. The

Stage 3." Classifier camouflaged target data used in this study represent a
A 2-1) pattern-matching classifier rejects cultural false difficult scenario in which the test targets were realis-
alarms caused by man-made clutter discretes and then tically deployed and covered with radar camouflage.
classifies target detections by vehicle type. In our The training data used to design the ATR system
studies we implemented a four-class classifier (tank, were taken from the uncamouflaged targets. The clut-
armored personnel carrier, howitzer, and clutter) us- ter data contained a moderate number of man-made
ing high-resolution (1 ft by I ft) PWF imagery. De- clutter discretes.

tected objects that pass the discrimination stage are The CFAR detection threshold in the prescrener
matched against stored references of the tank, ar- was set relatively low to obtain a high initial probabil-
mored personnel carrier, and howitzer. If none of the ity of detection (PD)) for the target data. At the output
matches exceeds a minimum required score, the de- of the prescreener, PD = 1.00 was obtained for the
tected object is classified as clutter; otherwise, the uncamouflaged targets, while PD) = 0.82 was obtained
detected object is assigned to the class (tank, armored for the camouflaged targets. At this CFAR threshold,
personnel carrier, or howitzer) with the highest match a false-alarm density of approximately 30 false alarms
score. per km 2 (FA/km 2) was obtained. The initial detection

The pattern-matching references used in the classi- processing was carried out at reduced resolution ( M

Fier were constructed by averaging five consecutive by I m).

(a) (b) (c)

FIGURE 4. Typical pattern-matching reference templates for (a) a tank, (b) an armored personnel carrier, and (c)
a howitzer. These pattern-matc,.,;F •' ences are used to classify detected objects by vehicle type. They are
constructed by averaging five consecutive spotlight-mode images of a target collected at 1' increments of
azimuth.
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Table 1. Overview of ATR System Performance.

P D P D
FAIAm 2  Uncamouflaged Camouflaged

Targets* Targets

After prescreening 30 1.00 0.82

After discrimination 3.0 1.00 0.75

After classification 0.3 1,00 0.70

* The uncamouflaged target test data was used for algorithm training.

Each detected region of interest (containing a p0- mernted by the pattern-matching classifier. As the fig-
tcntial target) was passed to the discrimination stage tire shows, most of the clutter discrctcs had corcla-
for further processing at 1ill resolution (1 ft bN' I ft). tion scores below the threshold vahie ofO.-, and thus
The discrimination stage determined the location and were rejected (i.e., classified as clutter). )etectced ob-
orientatin ofn each detected object, and then calcu- lects with correlation scores equal to or greater than
lated the textural features (standard deviation, fractal 0.7 were considered to be stuficientlh targetlike, and
dimension, and w'eighted-rank fill ratio) that were were classified according to their highest correlation
used to reject natural-clLtter discretes. L)iscrimina- scores (as tank, armored personnel carrier, or howit-
tion processing reduced the false-alarm density by a ZCr). Figure 5 also indicates that only a small fraction
factor of 10, to 3 FA/km-'. No uncamouflaged targets of the camouflaged targets were declared to be clutter
were rejected by the textural-feature tests; thus the because of low correlation scores.
initial PI, of' 1.00 was maintained. A fexv of the cam- The second function of the classifier is to assign

otifaged targets were rejected by the textural-feature
tests, which resulted in P)/) = 0.75 foir these targets. 1.0

In the classification stage of processing, the 2-1)
pattern-matcher was applied to those detections which 0.8
had passed the discrimination stage. Classification Clutter

processing reduced the faise-alarm rate by another - Uncamouflaged

factor of' 10, to approximately 0.3 FA/krtf. No g.
Unca.mot flged targets sx'ere rejected by the pattern Threshold

matcher (resulting in 11 = 1.00 for these targets), but z 0.4

some camouflaged targets were incorrecth, classified E auf g

as clutter (resulting in P1, 0.70 for these targets). 0.2targets

"lable I summarizes the performance of all three
stages of the ATR system. The i.incainoufgled target 0.0

I ,-0.2 0.0 0.2 0.4 0.6 0.8 1.0
data were used for training the discrimination and Correlation

classification stages. The thresholds of the algorithms
were set so that perfect performance was achieved FIGURE 5. Overview of classifier performance. The clutter

with the uncamouflagcd data. Once the thresholds and target data were processed separately. Most of the
clutter had correlation scores below the threshold value of

had bccn set in this wa', the ch.tter and canouflaged 0.7, and was rejected. Detected objects above the thresh-
targets were processed. old were classified according to their highest correlation

F:igure 5 illustrates how clutter reIcction was imple- scores.
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flaged targets were classified as targets, and 85% of
Table 2. Correlation Pattern-Matching those targets were correctly classified by vehicle type.

Classifier Performance The four-class, 2-D pattern-matching algorithm

used in this study, was implemented with normalized

(training data: uncamouflaged targets; dB references, which provided the best overall perfor-
test data: camouflaged targets and clutter discretes) mance among five different reference schemes that

were tested.
Percent Class,'Jied as

Tank APC Howitzer Clutter A TR Performance Using Single-Channel Data

versus F111y Polari'metric Data

Tank 89% 11% 0% 0% We compared the performance of the ATR system

APC 0% 96% 0% 4% using single-channel (HH) data with the performance
of the system using fully polarimetric PWF data.

Howitzer 0% 13% 71% 16% Figure 6(a) shows an HH-polarization SAR image of

Clutter 0% 14% 0% 86% a scene processed to reduced resolution (1 m by I nt).
In this image two regions of trees are separated by a
narrow strip of coarse scrub. Also visible in the image,

objects accepted as targets to target classes (tank, ar- although somewhat faint, are four power-line towers
mored personnel carrier, howitzer). Table 2 shows the located in the scrub. Figure 6(b) shows the corre-
classification performance of the baseline classifier as sponding PWF-processed image of the scene. The
a confusion matrix that tabulates the correct and power-line towers have greater intensity in the PWF
incorrect classifications. Recall that the classifier used image than in the HH image because the PWF image
templates constructed from uncamouflaged targets; includes contributions from HH, HV, and VV polar-
the classification results shown in Table 2 are for izations.
clutter discretes and camouflaged test targets that Table 3 compares ATR system performance using
passed the detection and discrimination stages. At the HH versus PWF data. The comparison was performed
output of the classification stage, 70% of the camou- by using the same target and clutter data used to

(a) (b)

FIGURE 6. Comparison of (a) HH and (b) PWF imagery. The power-line towers are more clearly visible in the PWF image
because PWF processing combines data from all three polarization channels (HH, HV, and VV).

V 0 11V F 6 \,Vq'R R (Pq, I VOL % , A(F•L B0 F ;0P 17
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can be estimated as follows:
Table 3. Comparison of ATR System Performance

Using HH Imagery versus PWF Imagery. S,- N
O=\ N-I

FAIA• 2  Oo Oo

HH Data PWF Data where

After prescreening 30 0.65 0.82 S1 = lOlgP(r, a) (2)
re,-a egion

After discrimination 3.0 0.57 0.75 and
After classification 0.3 0.24 0.70

S2= [1Olog, ,P(r, a) (3)
r.a, rcgion

generate the results in Table 1. At the output of each
stage (prescreening, discrimination, and classification) and N is the number of points in the region.

the false-alarm densities were set equal for HH and
PWF clutter imagery. This normalization permits us

to compare the HH and PWF detection performance The fractal-dimension feature provides a measure of

at each stage. the spatial distribution of the brightest scatterers in a

The detection performance was better with PWF region. In the following paragraphs we present the

data than with HH data. At the output of the detec- formal definition of fractal dimension, along with

tion stage I'D = 0.82 for PWF data and PD = 0.65 for several simple examples to illustrate the definition.

HH data. At the output of the discrimination stage We also show how to calculate the fractal dimension

PD = 0.75 for PWF data and PD = 0.57 for HH data. of detected objects in a SAR image. By using high-
At the output of the classification stage P) = 0.70 for resolution SAR imagery gathered at Stockbridge, New

PWF data and PD = 0.24 for HH data; the PD at the York, we demonstrate how the spatial texture differ-

end of the classification stage represents the overall ences measured by the fractal-dimension feature can

end-to-end performance of the ATR system. be used to discriminate between natural and cultural

objects.

Details of the Baseline Discrimination Features The fractal dimension of a set S in a two-dimen-

This section presents details of the three baseline sional space can be defined as follows:

discrimination features: standard deviation, fractal di-
mension, and weighted-rank fill ratio. The equations dim(S) = lim log M(
for calculating each feature are also discussed. Because log(og (4)

the concept of the fractal-dimension feature is fairly

involved, this feature is discussed at greater length
than the other two features, where M4, = the minimum number of e-by-E boxes

needed to cover S. (By covering S, we mean finding a
Standard-Deviation Feature set of square boxes Bi such that UBi D S.) For small

The standard-deviation feature is a measure of the values of -, the definition in Equation 4 is equivalent

fluctuation in intensity, or radar cross section, in an to writing
image. The log standard deviation for a particular

region is defined as the standard deviation of the M, - K- , (5)

radar returns (in dB) from the region. If the radar

intensity in power from range r and azimuth a is where K is a constant. This equation expresses one of

denoted by P(r, a), then the log standard deviation (Y the important ideas behind fractal analysis: fractal
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dimension measures how certain properties of a set needed to cover the line. If we reduce the box size
change with the scale of' observation r. In the f1W- again, to 1/4 unit by 1/4 unit, four boxes arc needed
lowing paragraphs, three specific examples clarify to cover the line. Each time the box size is halved, the
this idea. number of boxes needed to cover a line doubles: thus

E.winple 1. Let S be a single point. A point can be
covered by one box regardless of the box size t; hence dim(line) = Irn log 2'

dim(point) = li logM = lira log] -I,, log(2
, -0 log _0logI

( Figure 8 summarizes this example. It can also be

shown that a finite set of isolated line segmenrts has a
We could use Equation 5 to derive this same result by fractal dimension of one.
noting that the number of square boxes needed to Eviiple 3. Let S be a square area. Again, for sirn-
cover S is independent of the box size; thus dim(point) plicitv, we assume the square is 1 unit by I unit in
equals zero. Figure 7 sunmmarizes this example. In size. A single I -unit-by- I-unit box can cover the square.
addition, as long as r is below a certain critical value, a If we reduce the box size to 1/2 unit by 1/2 unit, four
finite set of isolated points can be covered by a fixed boxes are required. If we reduce the box size again, to
number of boxes (independent of r). Therefore, a 1/4 unit by 1/4 unit, 16 boxes are required. As the
finite •ct of i•solated points also has dimension of box size is halved, the number of boxes needed to
zero. cover the square area quadruples; thus

Evamp/e 2. Let S be a line segment. For simplicity,
we assume the line is I unit long. A single I -unit-by'- dim(square) = 1ira log 2- 2
1-unit box can cover the line. If we reduce the box -- 0 1 !
size to 1/2 unit by 1/2 unit, then two boxes are ,log 2

" M(N) V M(r)

F _j1 1/2 1 1/2 2

EIl 1/4 1 1/4 4

" 1 e 1/f

Dim (point) = lim log(1) _ 0. Dim (line) = lor = 1.C-0 Iog(l/e) f-0 log(lit-)

FIGURE 7. Fractal-dimension calculation for a point. As FIGURE 8. Fractal-dimension calculation for a line seg-
the size of the square box that covers the point decreases, ment. As the size of each square box that covers the line
the number of boxes required to cover the point remains segment is halved, the number of boxes required to cover
the same (i.e., one). As a result, the fractal dimension of a the line segment doubles. As a result, the fractal dimen-
point is zero. sion of a line segment is one.
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Figur: 9 summarizes this example. We used a we let the pixels ý ith the value I Constitute the set ,

square area in this example tot convenience. Any in Equation 4. A problem arises, hosevcr, whcn wc
area that can be synthesized from a finite number of attempt to apply the definition of Equation -4 direcil
square areas, however, will have a fractal dimension to our binary image. A-Lording to the dcefinition of
of two. fractal dimension, we need to take a limit as the box

From these simple examples, we see that fractal size e goes to zero. The smallest meaningful %amLe of
dimension clearly has the potential to discriminate the box size e, however, is the size of one pixel.
between certain types of objects in 2-[) space. The Therefore, we must develop an approximation to the
question is, how can this feature be applied to SAR formula of Equation 4.
data? From Equation 5 we observe that

"The first step in applying the fractal-dimension
concept to a radar image is to select an appropriately log Al, - dim log r + log A
sized region of interest, and then convert the pixel
values in the region of interest to binary (i.e., each for small F. Because the relation between log 1., and
pixel value equals 0 or 1). One method of performing log r is linear for small r, with the slope equal to the

this conversion is amplitude thlresholdiug, in which all negative of the dimension, the fractal dimension can
pixel values exceeding a specified threshold are con- he approximated by using only the box counts 1-r
verted to I , and the remaining pixel values are con- " = I and r = 2 in the following way:
vetted to 0. Another method is to select the Nbright-
est pixels in the region of interest and convert their log All - log A, _ log At1 - log Al,
values to 1, while converting the rest of the pixel digm - log 2 log 2

values to 0; this second method is the approach we (6)
used (because it worked better).

After converting the radar image to a binary image, where M, is the number of I -pixel-by- I-pixel boxes
needed to cover the image and M, is the number of
2-pixel-by-2-pixel boxes needed to cover the

M(W) image. Figure 10 summarizes the fractal dimensions
of simple objects as they are observed in SAR

S 1 imagery.

The following paragraphs provide two examples of

1/2 4 calculating the fractal dimension of regions of interest
in radar imagery. The examples use data extracted
from the SAR image shown in Figure 11. The figure

1/4 16 shows a Stockbridge, New York, clutter scene that
includes trees, a street with houses on both sides, a

swimming pool, and a meadow. The examples dem-

1 /r2  onstrate the fractal-dimension calculation for a typi-
cal tree (natural clutter) and the rooftop of a house

Dim (square) =li log(l/e2) 2. (cultural clutter).
F-D logr/n ) Figure 12 illustrates the fractal-dimension calcula-

tion for a binary image of a tree; the binary image was
formed by selecting the 50 brightest pixels from aFIlGURE 9. Fractal-dimension calculation for asquare area. 1 20-ft-by-I120-ft region of interest in the image of

Each time the size of each square box that covers the

square area is halved, the number of boxes required to Figure 1 . The number of 1-pixel-by-I-pixel boxes

cover the square quadruples. As a result, the fractal di- needed to cover this image is identical to the number

mension of a square is two. of pixels with the value I (i.e., MA equals 50). The
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Point Line Squarea 00 ý s
Points Lines L-shape

Fractal dimension =0 Fractal dimension =1 Fractal dimension 2

(a) (b) (C)

FIGURE 10. Fractal dimensions of simple objects in SAR imagery. (a) Points have a fractal
dimension of zero, (b) lines have a fractal ",mension of one, and (c) squares and L-shaped
objects have a fractal dimension of two. In the text we show how to calculate the fractal dimen-
sions of these objects by using the approximation derived in Equation 6.

t111111111LtfllI tiumbeir (it 2-pixel-bly- 2-pixel boxes needed tMiled ill thle righ11t11s0 SC.IICYCTrs Ofr .1 dtcte~ld o)Jcci.
to cover the iniagc Is z4 1; [I'u rc 1 2 shows tilis nitii inUlsi 1w the notation of' Equations 2 and] 3, weC defin
nial covering. By applyinug Equation 6, wec find that thle WejobteCd-ran k fill ratio il as to! lows:
the fractal dimension of thc tree is 0.29. This rcla-
live~lN lowv valuec rcflcý_ts thle fact that the blinary i11a.ge I)(~
of tile tree consists primarily of isolated pixels. ~lr~~tcix~

[-I"iurc 1 3 illIstrates tile fractal-dlimension calcula- =/(. j

tioli for a binary minage of a house rotp(this 1111110c

was formied iii the samec way as the imiageo tree tcin

[-igiire 1 2). Notice that the pixels in this Image are whelre k is selected to correspoiid approximately to
clusterd jinto liues and areas. The niumbier of' 1-pixel- thle br,,ihtest 59o of thle dectectd object's pixels. I[or
by- I -pixel boxes needed to cover tile iniage is 50, but nman-made objects a significant portion of' thle total
the mnliiimlni inumber of 2-pixel-by-2- pixel bloxes enlergy, colnies from a simall iiuniber of br(ight scatter-
iieeded to cover the imiage i's oillv 2 1. Byv using E--qua- ers; for natural clutter thle total ener'v i s distributed
lion 6. wec find that the fractal, dimension of the house miore evenilv amolig tile pixels.
rooftop is 1 .25. This relatively' hiigh val tie Is
caused 1W tile clus1tering of the pixels. The differenlt Future ATR System Improvements

fractal-dinienlsion valties for the tree aiid the The baseline ATR s\vsttni currently' uses oil[\ three
rooftop illuIstrate that this fiCature cain be used to feCatures Inl the discriniinatioin stage (standard udevia-
discrimlinate betweenci natural clutter atnd cu~ltural tioll. fractal dimeiision,. and v.'eiloited-raiik fill ratio):
cIlutter, we~ have found that these feCatures reliably reject ilatu-

ral-clutter false alarms. Other discrimnliiatioin features
WT'ig/iwa-Imik Li/i Ram)u kiwctur' could be added that wvould also reject sonici cultural-
The third textural featuire, the -weighited-rank fill ra- clutter failse alarnls. ["or example, a size featuire. such
til), nicasuires thle percenltage of' the total energy coii- as Ilen'thl and wvidth of tile detected oliject. could
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using spatial matched filter,,. The initial reCsultsI of-
these studies Indicate the posibilitv of a Ign~fiti.ant
redLI61 u I'ln inCo1LMputatio IMiCm and sinrage require-
mnitts Nxs h no reduICtion in pertornxiane ]
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FIGURE 12. Fractal-dimension calculation for the binary
image of a tree. The 50 brightest pixels (indicated by the __ _________- __

small black boxes) are relatively isolated, and 41 two-pixel-
by-two-pixel boxes are needed to cover them, which re- R EL F E R E N C, Fý S
suits in a low fractal dimension of 0.29.
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FIGURE 13. Fractal-dimension calculation for the binary dI//e/t(r/.Jeec 5

image of a house rooftop. The 50 brightest pixels (indi- '0 I,111 93

cated by the small black boxes) are more tightly clustered
than) they are for the tree in Figure 12, and only 21 two-
pixel- by-two-pixel boxes are needed to cover them, which
results in a higher fractal dimension of 1.25.

ogn it ion Sytn yUsing 3-1) Tm'.rgct Informiation"
by Shawn M.Verbou~t et al p-.esents an approach to
this classification task based onl the generation of 2-D)
temiplatcs from 3-1) models of targets.

Because the pattern-match irl, approach to classi fi-
cation requilres a large number of templates, we are
Investigating an alternative approach to classificationl-
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Discriminating Targets
from Clutter
Daniel E. Kreithen, Shawn D. Halversen, and Gregory J. Owirka

N The Lincoln Laboratory multistage target-detection algorithm for synthetic-

aperture radar (SAR) imagery can be separated into three stages: the
prescreener, the discriminator, and the classifier. In this article, we focus on the

discrimination algorithm, which is a one-class, feature-based quadratic
discriminator. An important element of the algorithm design is the choice of
features. We examine fifteen features that are used in the discrimination
algorithm-three features developed by Lincoln Laboratory, nine developed by
the Environmental Research Institute of Michigan, two developed by Rockwell
International Corporation, and one developed by Loral Defense Systems. The
set of best features from this pool of fifteen was determined by a theoretical
analysis, and was then verified by using real SAR data. Performance was
evaluated for a number of different cases: for fully polarimetric data and HH
polarization data and for 1-ft resolution data and 1-m resolution data. In all
cases the theoretical performance analysis closely matched the real data
performance. This closeness demonstrates a good understanding of the
discrimination algorithm. In addition, we formulate a set of criteria for best
feature choice that apply to quadratic discrimination algorithms in general.

INCOLN LABORATORY HAS PROCURED a fully the information present in a high-resolution SAR

polarirnetric, instrumentation-quality, high- image. Unfortunately, it is often difficult to design
resolution (1 ft by I ft), 35-GHz, millimeter- algorithms using the single-algorithm approach, be-

wave (MMW) synthetic-aperture radar (SAR), which cause high-resolution SAR imagery is difficult to model
has been used to gather imagery of targets of interest accurately and hence is poorly understood. The mul-
and clutter in a number of different locations and tistage approach becomes an attractive alternative,

deployments. The radar, which is mounted in a because of the reduction in required computational
Gulfstream G-1 aircraft, records data in-flight onto capability and the simplification in algorithm design.
24-track magnetic tapes. The tapes are then processed The Lincoln Laboratory multistage algorithm has
on the ground to form the SAR imagery. A recent three separate stages, each of which performs easily
Lincoln Laboratory Journal article by Leslie M. Novak identifiable functions. The first stage, which is called

et al. describes this radar system [1]. the prescreener, is a computationally simple algorithm
The Surveillance Systems group at Lincoln Labo- whose function is to pass all targets and eliminate

ratory has been developing algorithms to detect tar- only obviously non-targetlike naturally occurring clut-

gets of interest in this SAR imagery. A block diagram ter. The second stage, called the discriminator, ideally
of the algorithm suite is shown in Figure 1. The eliminates all naturally occurring clutter that has been
target-detection algorithm suite takes the form of a passed by the prescreener, and passes only man-made
multistage algorithm. In theory, it is possible to con- objects to the third stage, which is called the classifier.

struct a single algorithm that performs target detec- The classifier receives all man-made objects that have
tion in an optimal manner, and which exploits all of been passed by the discriminator and categorizes each
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image n Prescreener Discriminator s Classifier targets

Rejects imagery without Rejects natural-clutter Rejects man-made
potential targets false alarms clutter

FIGURE 1. Block diagram of the multistage target-detection algorithm. This article concentrates on the discriminator stage.

one either as a target of interest (of which there can be false alarms.These attributes include size, shapc, power,

a number of classes) or as an uninteresting' man-made polarimctric properties, spatial distribution ofrctlccted
object. power, and dimensionalirt. ULn fiortunately at present

In tI is article, we concentrate our atrenrion oil the fi) method exists for developing discrimination fca-
second stage, the discriminator. Tihe prescreener stage tures to exploit these" attributes in anl\ optimal fIsh-
is covered elsewhere [21; the classification stage is still ion. The best that can be done is to design a fcature
under developmcnt, that seems to exploit a specific attribute, and then test

the f|ature on a variety of' data to see if it separates
Algorithm Description targets from natural-clutter false alarms. If it does not
The discrielnarion algorithim used in the l.incoln separate targets from false alarms, the feature design is
laboratorv atutomatic target-detection algorithm stiite obviously poor; if it does separate them, then the
is centered around a one-class quadratic discriminator fe'ature m,' be a good one.

[3-51. A one-class discriminator is trained only on a The othier malor criterion that a fKature mtist sat-
target-training set, and it assumes that the Cltitter isf' is orthogowiili. In simple terms, features used
falsc-alarm dataset (i.e., the set of false alarms passed
by the prescrcencr stage) has unknown attributes in a
fcature space. Figure 2 illustratcs the concept of this
discrimination algorithm. For each region of interest,
the algorithm produccs a score that measures the

clidistance from the candidate to the center of the tar- Target
get-training set (in a feature space). When the algo- 2 Separation training

• in feature vector
rithm is protperly trained, a lower value ot this space

distance metric indicates a more targetlikc candidate.
Key elements of' the discrimination algorithm are Input vector Threshold

the features used to comipteic the distance netric. We

co'cr the discrimiinati,.n fcatures used in the Lincoln
L.aboratory target-detection algorithm suite inl the next Feature 1

five sections of this article. Subsequent sections cover FIGURE 2. Conceptual diagram of a one-class discrimina-

the discrinunation algorithnm itself in great detail. tion algorithm. This diagram represents a two-dimensional
feature space. If the separation in feature space is less

I)i.crimiltlitooll I+"atlrcs than the threshold, then the region of interest from which
the input vector is extracted is declared to be a target.

pAinuberi, if attributesthat to re presen in ther full lConversely, if the separation in feature space is greater

plaritietric, high-resolution SA. imagery can be ex- than the threshold, the region of interest is declared to be
ploited to discriminate between targets and clutter clutter.
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together in a discrimination algorithm must measure laboratory; the goal was to develop and test target

different attributes of the region of interest. For ex- detection algorithms by using a common dataset pro-
ample, five different features that measure similar vided by Lincoln Laboratory. Each contractorIs ap-

polarimetric properties of the candidate region of proach to the target-detection problem was some-
interest shou, ld not be used together in the same what different, but all used a number of features. We
discrimination algorithm. In fact, using similar fea- chose the most promising features for evaluation in
tures is likely to make discrimination performance this study.
worse. This fhct is a consequence of the likely occur-
rencc that the target-training dataset will differLioln Labotor Discrimination Femtures

what from the target-testing dataset. This phenom- The three Lincoln L.aboratory discrimination features
enon is covered more fully in the sidebar entitled are standard deviation, fractal dimension, and
"Adding Features Can Degrade Performance." weighted-rank fill ratio. They were developed by Leslie

Another desirable property of the features in a Novak, Michael Burl, and Gregory Owirka, all of
discrimination algorithm is that they should be ro- Lincoln Laboratory. The features are computed from
bust in a number of ways. Many feature algorithms target-sized areas that are centered over the pixels
require thresholds to be set to isolate the brightest identified by the prescreener for further processing.
scatterers, for example, or to isolate the scatterers with The extent of the target-sized area is determined by
the most contrast. The feature values should not be the a priori knowledge of what type of target is being
too sensitive to the settings of these thresholds, be- sought, and a box-spinning algorithm is used to de-
cause they may then work in one deployment situa- termine target orientation [7].
tion but not in another similar situation. The features The standard-deviation feature is computed from
should also be somewhat robust to countermeasures; the typical estimator for the standard deviation. It
radar signatures of military vehicles are frequently uses the power (expressed in dB) of all the pixels in a
altered by any number of methods. Some common target-sized box.
methods include placing foliage and mud on the The fractal-dimension feature, which is illustrated
vehicle, adding metal parts to the vehicle, deploying in Figure 3, provides a measure of the spatial dimen-
camouflage netting around and on top of the vehicle, sionality of the potential target [61. This feature esti-
coating the target with radar-absorbing material, or mates the Hausdorff dimension of the spatial distri-
simply opening the hatches of an armored target. bution of the top Nscatterers in the region of interest.
An effective discrimination feature would ideally be For example, a straight line has a Hausdorff dimen-
insensitive to these methods and to other types of sion of one, and a solid rectangle has a Hausdorff
countermeasures. dimension of two. Various other space-filling objects

We examined fifteen features for use in the Lincoln with holes have a Hausdorff dimension that falls be-
Laboratory target discrimination algorithm; three of tween one and two. An isolated point has a Hausdorff
these features were developed at Lincoln Laboratory dimension of zero.
16], nine were developed at the Environmental Re- To compute the fractal-dimension feature, we
search Institute of Michigan (ERIM) of Ann Arbor, threshold the region of interest by taking only the top
Michigan, two were developed by Rockwell Interna- N scatterers in terms of power. A binary image is
tional Corporation of El Segundo, California, and created from these scatterers, and the minimum nu, m-
one was developed by Loral Defense Systems of ber n1 of I-pixel-by-I-pixel boxes (d, = 1) that cover
Goodyear, Arizona. The non-Lincoln Laboratory fea- all Nscatterers is determined. This number, of course,
ttires were developed under the Strategic Target Algo- is equal to the value N. Then the minimum number
rithm Research (STAR) contract, a yearlong research n, of 2-pixel-by-2-pixel boxes (d, = 2) that cover all N
contract funded jointly by the Advanced Research scatterers is determined. This number is less than or
Projects Agency (ARPA) and the United States Air equal to N. If the spatial distribution of the scatterers
Force. This contract was administered by Lincoln is highly diffuse, the value of 11, will be close to N, if
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ADDING FEATURES (CAN DEGRADE
PERFORMANCE

IN TilE MAIN ARTICLE, a theoreti- ered (see the section entitled all twelve Lincoln Laboratory and
cal analysis of the one-class qua- "Confirming the Gaussian As- ERIM STAR discrimination fea-
dratic discriminator shows theo- sumption"). Small departures tures. Notice the significant per-
retical expressions for the from Gaussianity, however, are formance degradation that occurs

probability of detection (PI/) and probably not the major cause of when the seven extra features are
the probability of false alarm (P/p) the phenomenon we are address- added. Notes on interpreting this
of the algorithm. We make the ing here. Instead, the major cause type of graph can be found in the
claim in the section on discrimi- of degraded performance is that sidebar entitled "Interpreting
nation features that adding fea- the second condition is not Plots of Pd versus FA/km."
tures does not necessarily improve being met. Figure B is a notional diagram
discrimination performance. We Figure A shows performance that illustrates the degradation
show here that this is indeed the curves for the I-ft, polarimetric phenomenon. The diagram is
case by giving two examples; the whitening filter (PWF) data us- complicated but the explanation
first .-xample shows discrimina- ing the features described in the of it is relatively easy. There are
tion performance with the set of section entitled "Best Features for three distinct sets of data displayed
five best features, and the second Discrimination." This figure, in the diagram: target training,

example shows discrimination which is the same diagram as Fig- target testing, and clutter false
performance with the same set of ure 17, also shows performance alarm. Each dataset is displayed
features in addition to seven oth- curves for the same dataset using for two features, which we call
er features.

The idea that adding features
can degrade performance is, per- 1.0

haps, counterintuitive. In fact, we - Prescreener
cannot degrade performance by 0.8 - -- Best five features

adding features if a few key con- -- Twelve features

ditions are met. These conditions 0.6 /
are (1) the real data obey perfect-
ly the multivariate Gaussian as- Q 0

sumption made in section en-
titled "Theoretica', A,%,-Jysis of the
One-Class Quadratic Discrimina- 0.2 -
tion Algorithm," and (2) the tar-

get-training data and the target- 0.0
testing data have exactly the same 0.001 0.01 0.1 1.0 10 100 1000
statistical distribution. FA/km 2

The multivariate Gaussian con-

dition is difficult to verify for the FIGURE A. Performance curves comparing discrimination performance for

real data, especially when a num- the five best features and for all twelve features. Performance degrades

ber of features are being consid- when more features are added.

28 . *..
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Feature I and Feature 2. Imagine actly the same statistical distribu- we remove the second key condi-
that the target-training data and tion, and the data obey (more or tion mentioned above. First, we
the target-testing data are the same less) the Gaussian assumption assume that the discrimination al-
(training and testing is done on (within each data type). gorithm uses only Feature I (re-
the same data, so ignore the red Now, while still assuming the fer to the green, red, and black
points on the diagram for the time target-training data and target- points plotted along the abscis-
being). testing data are the same, we add sa). By drawing a threshold at the

First, assume that the discrim- Feature 2 (refer to only the green point labeled Threshold A, we see
ination algorithm uses only Fea- and black points in the middle of that the discrimination perfor-
ture I (refer to only the green and the graph). We can then draw mance is equivalent to the previ-
black points plotted along the ab- Threshold B as an ellipse around ous case because the target-train-
scissa for this case). We see that the data, and do a still better job ing data and the target-testing
the discriminator does a good job at separating targets from clutter data for Feature 1 have similar
of separating targets from clutter (in this case one false alarm is characteristics.
by using Threshold A (three false called a target). The two key cri- Now, we add Feature 2. Per-
alarms are called targets). In this teria are still obeyed. formance is severely degraded be-
case the two key conditions are If we assume now that the tar- cause we cannot draw an ellipse
satisfied: the target-trainin- data get-training data and the target- (with the same orientation as
and target, testing data have ex- testing data are different datasets, Threshold B) around the center

of mass of the green points that
does not engulf large numbers of

"* Target testing clutter false alarms (black points)

"* Target tranm.q - while still engulfing the target-
" Clutter false alarms testing data (red points).

. .0 •* The important point is that
any threshold ellipse must have
the same orientation as the ellipse
shown as Threshold B, because

0 T the orientation of the ellipse is
e%, determined by the statistical char-

4 10 T-,- -hold B acteristics of the target-training
0 , -"' -- .... -. data. This example is a particu-

" 41 ' ,"I " larly egregious illustration of

• 1 , 0 ,' the failure of the second key
, "0**0" condition, because the target-

"-- . . training data and the target-test-
Threshoid A ing data now have different

statistical characteristics. The ad-
:---: - -- =: ,, - -dition of Feature 2 obviously de-

Feature 1 grades performance severely. More
subtle cases that significantly
affect performance occur more

FIGURE B. Notional diagram of reason for performance degradation when frequently.
features are added. This graph shows two features in a feature space.

I!, ... I .. I ý! .'. , . ý.. , ý ! , . .; 2 9



- KREITIIlN ET AL
0/ ",,rmln111t /Ig a I 1?1't ,m hi I.t'

19 FI W FLI 6-- 6--

61 W[ ] 1 6

(a) (b)

FIGURE 3. Calculation of the fractal-dimension feature, which measures the spatial bunching of the brightest pixels in

a region of interest. (a) The brightest pixels for a tree tend to be widely separated, which requires a relatively large
number of covering boxes and produces a low value for the fractal dimension. (b) The brightest pixels for a target tend

to be closely bunched, which requires fewer covering boxes and produces a high value for the fractal dimension.

the scatterers are spatially bunched the value of ii, will
be considerably less than N. These values are deter- Fra,-a

mined for the two specific examples in Figure 3 and
plotted in Figure 4, with the logarithm of n, and n,
on the ordinate, and the logarithm of'd, and d, on the
abscissa. The negative slope of the line through the
two points, which is given by oe

H log, n - log , (1) Target
logde - log (d)

is an estimate of the Hausdorff dimension of the
region of interest. For the high-resolution data in this Logl 0 d

article, we used N= 50. FIGURE 4. An estimate of the Hausdorff dimension of the
The weighted-rank fill-ratio feature is computed tree and target in Figure 3. For both objects the total num-

from the top N scatterers in the target-sized box. The ber of scatterers is 50; for the tree the minimum number of

fiature is computed by totaling the power in the top covering boxes is 41 and for the target the minimum num-
ber of covering boxes is 20. The negative slope of the line

N pixels within the target-sized box, and normalizing for each object is the estimate of the fractal-dimension
by the total power of all pixels in the box. This feature feature. Targets tend to have higher fractal dimensions
attempts to exploit the fact that power returns from than natural clutter.

30 i I I n. i , 1 1 i ' I ,.
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most targets tend to be concentrated in a few bright x- fi
scatterers, whereas power returns from natural-clutter (2)
talse alarms tend to be more diffuse. This feature
measures a power-related property of the target-sized where x represents the test pixel, and P, and a are
box, which makes this feature different from the fractal- estimates of the local mean and local standard devia-
dimension feature, which measures a spatial property tion, respectively, of the surrounding clutter. The esti-
of the entire region of interest. mates of the parameters from the surrounding clutter

are accomplished by using the pixels in a window
ERIM Discrimination Features around the supposed target whose opening is large
The ERIM discrimination features were developed enough to exclude the target return. Figure 5 illus-
and provided to Lincoln Laboratory under the STAR trates this window, and the opening is called the guard
contract mentioned above. They were modified for area.

this study by altering the thresholds to account for a The CFAR statistic given by Equation 2 is comn-
target dataset that was substantially different from the puted for each pixel to create a CFAR image. The

dataset used for the STAR contract. Instead of using a maximum CFAR feature is the maximum value in the
target-sized box as a preliminary step, as in the Lin- CFAR image contained within the target-shaped blob.
coin Laboratory feature algorithms, the ERIM feature This quantity is similar to the basic feature used in
algorithms compute a target-shaped blob by perform- the prescreener algorithm. The mean CFAR feature is
ing morphological operations. These operations serve the average of the CFAR image taken over the target-
both as a method of grouping spatially related hits shaped blob. The percent bright (AFAR feature is the
from the prescreener and as a method of estimating percentage of pixels within the target-shaped blob
the size, shape, and orientation of the supposed that exceed a certain CFAR value.
target. The polarimetric discrimination features are based

There are three categories of ERIM discrimination on a transformation of the linear polarization basis in

features: size-related features, contrast-based features, which the Lincoln Laboratory MMW SAR gathers
and polarimetric features. Each of these three catego- data to an even-bounce, odd-bounce basis described
ries contains three features. The size-related features by the equations

are mass, diameter, and square-normalized rotational
inertia. The contrast-based features are maximum con- I HH + VV12
stant false-alarm rate (CFAR) statistic, mean CFAR odd 2
statistic, and percent bright CFAR statistic. The pola-
rimetric features are percent pure, percent pure even,
and percent bright even. We describe each feature in

detail in the following paragraphs. and
The three size-related features utilize only the bi-

nary image created by the morphological operations. F HH - VVI2
The mass feature is computed by counting the num- cvcn = 2 + 2IHVL

ber of pixels in the morphological blob. The diameter
is the length of the diagonal of the smallest rectangle = RR2 + LL1

(either horizontally oriented or vertically oriented)
that encloses the blob. The square-normalized rota- The odd-bounce channel given by the first equation
tional inertia is the second mechanical moment of the corresponds to the radar return from a flat plate or a
blob around its center of mass, normalized by the trihedral; the even-bounce channel corresponds to
inertia of an equal mass square. the radar return from a dihedral. Figure 6 illustrates

The contrast-base-I features are determined by a examples of these reflectors, along with notional dia-

CFAR algorithm. This algorithm can be described by grams of how they reflect the radar energy. The use-

V~ ~ ~ ~ 0 +1.!1 !, ý 0 71 1(Iý,1 .Iý44ý1 31
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G uard area F p

-Flat plate

Test cell Target

Trihedral

FIGURE 5. CFAR template, showing the pixel under test,
and the surrounding window of pixels from which clutter
estimates are computed. The test pixel and clutter window
are separated by a guard area, which protects the clutter
estimates from being corrupted by portions of the target
return.

fulness of these polarimctric feature resides in the fact Dihedral
that few dihedral structures exist in natural clutter,

but these structures are plentiftul on most man-made
targets. Natural clutter tends to exhibit more odd-

bounce reflected energy than even-bounce reflected (b)

energy.
The ERIM polarimctric features are formed from FIGURE 6. Reflection of radar signal from a variety of re-

the even-bounce and the odd-bounce images. The flectors. (a) Odd-bounce reflectors include a flat plate and

percent-pure feature is the fraction of pixels within a trihedral. (b) Even-bounce reflectors include a dihedral.

the target-shaped blob for which at least a certain Radar backscatter from natural clutter is predominantly
odd bounce, while backscatter from man-made objects istraction of the scattered energy' lsi ete h

I", ftypically an equal mixture of even bounce and odd bounce.
even-bounce channel or the odd-bounce channel. Per-
cent even is the fraction of' pixels within the target- exhibit large amounts of pure odd-bounce energy.
shaped blob for which at least a certain fraction of the Also, man-mnadc objects are more likehl to exhibit an
scattered energy fills in the even-bounce channel, equal niixture of even-bounce and odd-bounce
The percent-bright-even feature is the fraction of energy than a natural-clutter false alarm.
pixels that exceed a certain value in the (FAR image
described above, and which arc mai nlv even-botince Rockw ell /Dci,,*ioSn/j',atjon 1 r fe es

scatterers. Tl'he Rockwell discrimination features were also dcvcl-
The main inpctus fri these features is that a man- oped and provided to Lincoln lIaboratorv under the

nade object exhibits approximately equal aniounts of STAR contract. Like the 'RI1N1 discrimination fea-
pure even-bounce energy and odd-bounce energy, tures, they werc niodificd to account for the diff.rCnt
whereas a natural-cluttcr talse alarm is more likely to type of target data used in the present stud\'. These
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features use the pixels in a target-sized box for feature The relative phase between the HH polarization
calculation; tile algorithm used to determine the on- channel and the VV polarization channel is then cal-
entation of tile target-sized box is the same as that culated for the remaining pixels within the target-
used for computing the orientation for the Lincoln sized box. The values are arranged in a histogram
laboratory discrimination features described earlier. plot, such as the example shown in Figure 7, and the
Some of the Rockwell discrimination features are simi- feature is calculated from this plot. The polarimctric
lar to those already used by Lincoln Laboratory and phase ratio is defined as the number of pixels to fall
ERIM. These similar features were not considered. within ±X- of 180' relative phase on the histogram,
Instead we concentrated on two other Rockwell fea- divided by the number of pixels that fall within ±x° of
tures: (0) the polarimetric phase ratio feature, and (2) 0' relative phase on the histogram. We used a value of
the specific-entropy feature. x = 900.

The polarimetric phase ratio feature is another Specific entropy is the second Rockwell discrimi-
attempt to exploit differences in polarization between nation t'.n ' used in this study. Because of the coin-
radar returns from targets and radar returns from plicated , mnition of this feature, it was not clear
clutter. The relative phase between the HH polariza- which step in the calculation provides the ability to
tion channel and the VV polarization channel is used separate targets from natural-clutter false alarms. "To
for this purpose. Only pixels in a target-sized box (the understand this feature better, we investigated it in
orientation of which is determined by the box-spin- considerable detail. A number of steps are involved in
ning algorithm described in Reference 7) are exam- computing this feature:
ined. In addition, to eliminate the low-return pixels 1. Choose a threshold Tthat is set to the quantity
that may have a random phase due to corruption by corresponding to the 98th percentile of the surround-
receiver noise, we use only the pixels that exceed a ing clutter, and calculate a normalized amplitude by
threshold in both the HH polarization channel and
the VV polarization channel. This threshold, which is ai = max(p, - T, 0),
set to a percentage of the maximum power in a pixel
in a given image, is set to a low value so the where a is the amplitude (in dB) above the threshold,
thresholding operation eliminates only the lowest re- p is the amplitude of the original pixel (in dB), i Is the
turn pixels whose phase is most likely to be corrupted pixel tag number (of which there are m, which is the
by receiver noise. number of pixels in the target-sized box), and T is the

value (in dB) of the threshold.
80 1 1 2. Normalize the amplitude by

"I 60 6

40

E unless ai 0 for all i = . in, in which case the
Z 20 specific-entropy feature is set to zero.

3. Compute the specific-entropy feature by

0 M
0 90 180 270 360 specific entropy= - f, fIog1

Relative phase (degrees) log in

FIGURE 7. Histogram of relative phase between the HH
polarization channel and the VV polarization channel. This
type of plot is used in the calculation of the Rockwell posed properties of a target: (1) the pixels exceeding
polarimetric phase ratio feature. the threshold Tdo not vary greatly in amplitude for a
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target, but they do vary greatly for a natural-clutter ordinate, and the logarithm of the count feature iN

false alarm; and (2) more pixels exceed the threshold plotted on the abscissa. If the two features are highly

T for a target than for a natural-clutter false alarm. correlated, the plot shows the points falling along a

The question that remains is which step in the feature straight line, which is indeed the casi 1'0n this cx-

calculation provides the separation between targets ample. In fact, all the target and clutter false-alarm

and natural-chltter false alarms. datasets that we examined showed similar scatterplots.

We studied this problem by separating the calcula- For practical purposes, this scattcrplot indicates that

tion of the specific entropy into the steps described the count feature and the specific-entropy feature are

above, and then we calculated a feature based only on equivalent. The extra steps given above in the calcula-
the operation in each separate step. To this end, we tion of the specific-entropy feature do little to

invented a simple count feature, which counts the increase the separation between targets and natural-

number of pixels that exceeded the threshold Tas it clutter false alarms.

was calculated above, and normalizes this value by the

total possible number of pixels in a target-sized box. Loral Dis'rniuntation Feature

This procedure was done for targets and for clutter L.oral Defense Systems was the third participant in

false alarms, and the count feature was then plotted as the STAR contract. Many of their discrimination
a scatterplot versus the specific-entropy feature, as features substantially overlapped the features of the

shown in Figure 8 for a sample target dataset. other two contractors and Lincoln Laboratory. For
In this plot, specific entropy is plotted on the this reason, we examined only one Loral discrimina-

1.0 1 1'I ' I ' I ' I . .. . 1 . II

* Stockbridge natural-clutter false alarms 0 Target testing
* Stockbridge natural- and cultural-clutter false alarms 0 Target training

0.8

C> 0.6

0

Cn 0.4
a,

0.0

0.2 £•

0

0.0 1. .. I .. . . . . I . . .

0.0001 0.001 0.01 0.1 1.0

Count feature

FIGURE 8. Scatterplot of the Rockwell specific-entropy feature versus count feature. Points falling on a straight
line indicate a high correlation between the two features.
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tion f.aturc-the contiguousness fl-ature. which consists of a targer-sized area plus a border
"To calculate this feature, we segment each image Containing the surrounding clutter. 1ach region of

into thrce separate images based on the amplitude of interest was then segmnentcd into the three categories
individual pixels, as shown in Figure 9. All the pixels by using 0nyV tile cltutter area surrounding each target
in an individual image are hisrogranmmed and then candidate to determine the threshold levels.
divided into three categories. hli lowest 25% of pix- T'hc thresholding procedure ef'fcctivelY create'. three
els are called s/,'aow (level I ). the middle 60% are regions of interest: one that contains the brightest
called backg'rond (level 2), and the top 15% are pixels (called the level 3 image), one that &ontains
called the taiget region (l.evel 3). For the purposes of the dimmest pixels (called the level I image), and
this study, we modified the procedure by' applying the one that contains the midlevel pixels (called the level
thresholding process onl, to each region of interest, 2 image). Thc same thresholding procedure is per-

formed on the CFAR image, which is derived in the
same way as the ('FAR image described in the section

Region of interest on ERINM discrimination features and determined by

the expression in EquatioI. 1. "l'he contiguousness
feature is determined by computing numbers from
each of these six regions of interest.

The computation of the contiguousness tedatuwr is

rived from only one image (i.e., the Level I (TAR
image, the level 2 (FAR image, the Level 3 (FAR

image, the Level I image, the Level 2 image, or the
(a) Level 3 image). Each pixel included in each particular

image is counted, and its immediate neighbors that
Shadow Background Target region appear in the same image are counted as well. "l'l[e
(Level 1) (Level 2) (Level 3)

Count is then normalized by the total number of pos-
sibilities that could have occurred (which is nine times

the numnber of pixels in the image). "'le final number,
which has a value between zero and one, is the con-
tiguIousness number for that image. "Ilhis operation is
done for every image, so the contiguousness feature
gives six separate numbers for each region of interest.

S 25% i0% 15 0%1Discrimination Algorithm

•t T As mentioned at the beginning of the section on
Lower Upper algorithm description, the Lincoln Laboratory dis-

threshold threshold i icrimination algorithm is based on a one-class qua-

(b) dratic discrimination algorithm, the inputs of which

FIGURE 9. Concept of contiguousness feature. (a) The are the feature vectors for each candidate region of
target within the region of interest has an irregular shape. interest. The algorithm is trained beforehand with
The radar illuminatesthis shapefrom thetop, which causes representative target data only (no clutter data are
a shadow to extend downward in the image. (b) The two tised for the training, hence the one-class algorithm).
thresholds in the histogram of pixel power (in dB) divide Often these target data consist of images of targets
the region of interest into three categories: shadow, back-
ground, and target region. The Loral contiguousness fea- with no countermeasurs applied. The tests performed
ture is computed by first forming six separate regions of for this article use this training method.
interest based on these categories. [he reasoning behind this type of training is that
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predicting the use or modification otfcnemy targets is variate (,aussian distributed. Then the 7, values are
impossible, so training on exactly the same types of chi-squarcd distributed [81. and the pdf be writ-
targets that will be encountered in a real situation is ten as

also impossible. Therefore, data gathered by using
non-countermneasured targets seem a reasonable choice Z_) ( )
for a target-training dataset. Any realistic test of the /, (Z) =

discrimination algorithm, however, must Include tar-
gets that have some countermeasures applied.

Theoretical Amalysis of' the One-Class Quirantic where f(z) = I and Var(z) = 2/n.
Disrimination AgorithIn The distribution of Z, under the target (non-train-

The one-class quadratic discrimination algorithm used ing) and clutter false-alarm classes with these assump-
in the Lincoln Laboratory multistage target-detection tions is more difficult to calculate. In each ofthe two
algorithm can be described mathematically as cases, a different matrix A must be found such that

-,. =-( 1_x;-MP,,)' SZ/(X -Masa
SA, S,A, =1

for =1,2 ..... k+ (3) A SA,

and

where , is the number of features used in the dis-
criminator, M,. and S,. arc the estimates of the mean A, A,,A =I

vector and variance-covariance matrix of the training A' S A = L
target set, X, is a random vector representing the

observed candidate features, and Z, is a random vari- where L, and L, are diagonal matrices. This operation.
able representing the distance from the test point to which is a simultaneous diagonalization, reduces the
the target-training class. The two variables k, and k,. problem of evaluating Equations 4 and i to one of
are the number of targets and the number of clutter finding the distribution of
false alarms, respectively, that the discriminator re-
ceives from the prescreener stage of the multistage (6)
algorithm. " =6

TO analyze the discriminator given by Equation 3,
we need to find the quantities and

Prob I < K I i's -agt P,, (4tar,,et} - ,/)-, (7

and I X=1 1 (7)

Prob {Zi < K I is clutter} =P,.,, (5) where

where K is the hard threshold. This analysis involves
finding the probability distribution function (pdf) of = diag (L,)!
Z, for the target case and for the clutter false-alarm 4,,01 A, (M, - MI,, )
case, and then integrating the pdf according to Equa-
tions 4 and 5. and

The distribution ofZi for the target-training dataset
is easy to calculate if the assumption is made that the = diag (L,)/
estimates of M,. and Sr take on their true values. For ., = A, (M. - M
tractability, we also assume that the features are multi-
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and where the operator diag(') indicates the extrac-
[ion of the diagonal vector from the matrix argument. Coqi/t~i,,t /, (Aisa, A . pion
Ihc quantity n is the numnber of features used in the We make a kcY .SLl1umption1 n11 the theoretical pcrtor-
discriminator. Mance prediction for the discrimination algorithm

(alCUlating the distribution of Equation 6 or Equ, a- given above,-c assumfle that the datascts (target train-
ton "vithout the multivariate (laussian assumption ing, target tcsting,,. and cILitter false alarm, are multi-
would be difficult because the summation would then variatc (GaussiaW distributcd. There are two tests that

be over uncorrclated--but not ncccssarilY indepcn- are feasible to ce ifirm this assumption; the first test iS
dent--random variables. Once again, ssc make ii for the univariate case and the second test iS for the
assumption that the estimates of M, and S,. take on bivariate case. I ~sts for higher dimensions exist but

their truC values. the.' can become complicated and difficult to intIcr-
"1he characteristic function of the distribution of prct [9] (or they' rel' on making some other Lrucial

Equations 6 and - is given by assumption, \vhich can be dif'ficult to check). We
chose to perform the univariatC and bivariatc tests, for

Oi I,, which sve give the risu~lts here. W\e also created a
¢,,(t) = cxpl -It'/ 171 (1 - 2jtý/,)- V . scatterplot for a trivariatc test.

I 2 /b., All the tests described here sscre done as a check on

algorithm performance and not AS alln end iII hCm-
In this equation,/ - -1 . We canl omit the target and selves. \We did not try to c L1cUilate exc I quain t t,lt e
cluttcr-false-alarm stibscripts because the hmathcmat- measures for goodness of' fit. An exact study \ssould
ics for the two cases is similar. This characteristic have added considerablc complCxity to our task. w\hile
f'unction can be inverted and integrated according to providing little insight. Instead. our test, svcrc done
E:.quations 4 and 5 b\l using Fourier trisf'orm theory, b" using graphical techniques and the fits \yore per-
so that formed bs' cvc: only approximate (auIssian its CaIn be

ascertained bs' such techniques. T'he proof' that the
",A theory is an accurate predictor of pcrformancc is not

>Z(A) = fi ( 1)dz contained in these tests, but rather in the comparison
of real data resulIts with theoretical results. This coIn-
parison is given in the section entitled "Real D)ata

S 1" - ',, l cos(nAcq) versus iTheoretical l•erformance."
2 ' The univariate test is straightf'orward. We plot each

p (q) feature on G(aussian-scaled paper, and test it by exam-
[ (q)sin(nq) dq '"ng if the cumulative density function is a straight

q line. In general, we found that most of the features for

most of the datasets were adequatels tisariate

and Gaussian. In the few exceptional cases, the distribu-
tions svere not fhir off, and the discrepancies were not

"/iK significant in the final results. FigIure 10 is an example
//J, (A-) f f(z)dz of a univariatc test wvith the fractal-dimension feature.

'The bivariate case is tested by using scatterplots.
1xv which show data points of'one feature versus another

2 cos(;AT) feature. For Gaussianits, these points should fall Il an
ellipsoidal bun,:h around the centroid of thec data

SIpoints. There should be more data points near the
sini(nAq) ,q/. center of the ellipse, and fesecr data points farther

q from the center of the ellipse. WC could carefull' and

i , , '. •... .. . ' - ' 3 -
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FIGURE 10. Univariate Gaussian test of the fractal-dimension feature. Any straight
line on this graph represer's a Gaussian curve.

quantitatively vcrie,' the percentage of points within a natural-clutter false-alarm, and natural- and cultural-

certain normalized radius of the center of mass, which clutter false-alarm datasets are shown. The target-

would give a measure of how Gaussian the data were training and target-testing datasets seem to be reason-

distributed. We did not, however, perform this quan- ably elliptically distributed around their centers of

titative verification; we merely observed how closely mass, and they seem to be close to each other; both of

the data points were bunched arournd the center of these properties are desirable. The clutter false-alarm

mass. datasets seem to be somewhat less elliptical, but are
These graphs are also useful for checking the corre- reasonably well separated from both target datasets.

lation between two features; the more linear the data The three-dimensional scatterplot shown in Figure

points are, the higher the correlation. If the data 12 illustrates all three Lincoln Laboratory discrimina-
points fall in an ellipse that is horizontally or verti- tion features for the target-training, the target-testing,

cally oriented, then the data points are uncorrelated. and the natural-clutter false-alarm datasets described
This test is not just an interesting footnote; the sec- in the section entitled "Data Used." There are two

tion entitled "Feature Choice Guidelines" describes things to be noticed about this figure. First, the figure
the importance of choosing features that are orthogo- clearly shows the separation between targets and natu-

nal (i.e., uncorrelated) for good discrimination per- ral-clutter false alarms, and it shows that the clutter
formance. The scatterplots can also give additional false alarms intermingled with the target datasets tend

insight into the ability of two features (taken simulta- to be those created by man-made objects (i.e., cul-

neously) to separate targets from clutter. Ideally, we tural clutter). Second, the figure helps confirm the

would like the target-training dataset and the target- approximate Gaussianity of the target datasets and
testing dataset to be coincident, and the clutter false- the natural-clutter false-alarm datasct.

alarm dataset to be separated from the other two by a Notice the distribution of the red points (tile tar-

wide margin (measured both along the abscissa and get-training dataset) in the figure. If these red points

the ordinate), arc Gaussian distributcd, they should form an cllip-
Figure 11 shows an example of a scatterplot for the soidal pattern around the center of the red point

fractal-dimension fcature versus the weighted-rank cloud with greater density of points toward the ccn-
fill-ratio feature. The target-training, target-testing, ter. Likewise, the dark blue points (the target-testing
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dataset), the green points (the natural-clutter false- natural-clutter false alarms and pass the cultural-CliL,-
alarm dataset), and the light blue points (the cultural- ter false alarms to the classification algorithm.
clutter false-alarm dataset) in the figure should he The goal of the discrimination algorithm, as stated
distributed in a similar manner for Gaussianitv to earlier in this article, is to reject talse alarms caused by
hold. natural clutter. For most of this article, we do not dis-

Figure 12 shows that the red points and the dark tinguish between clutter false alarms caused b'y natu-
blue points are distributed in an approximately ellip- ral clutter and clutter false alarms caused by cultural
soidal pattern around their respective centers. The clutter, because it is impossible to know, in anv kind
green points, however, are less ellipsoidal in their of realistic scenario, which type of clutter talse alarm a

ight blue points are clearly non- given region of interest is (or even if the region of
distribution, and the ligh blu pont clal no
ellipsoidal. As we demonstrate in a later section, the interest is a clutter thlse alarm or a legitimate target).
minor deviation of the green points (i.e., the natural- In Figure 12 we separate the two types of false
clutter false alarms) from GaIussianity does not greatly alarms for analysis purposes. For the discrimination
affect the agreement between the theory and the real algorithm to perform well, the targets must be sepa-
data. The lack of Gatssianitv in the light blue points rated from the natural-clutter false alarms. Figure 12
(i.e., the cultural-clutter false alarms) is not critical shows that the targets are indeed separated from the
because the discriminator is designed to eliminate the natural-clutter false alarms but not from the cultural-

"• Stockbridge natural-clutter false alarms * Target testing
"* Stockbridge natural- and cultural-clutter false alarms * Target training

1.0 -7I I I I I I

0.8 3

0

0.6.

00

S0.6 4
S! "

i _:!It i
0.2 0!;i.;i1iI

o. Oo °I3:t I II i I
0.20* :
0.0 .0 I I I I I I I I III I I I I I I I I

0.0 0.5 1.0 1,5 2.0

Fractal dimension

FIGURE 11. Scatterplot of fractal-dimension feature versus weighted-rank fill-ratio feature. For good discrimination

performance with these two features, the target datasets should be separate from the false-alarm datasets.
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of features based on these predictions. We shall see ability of detection. The data used in the prescreener
that this strategy is a reasonable one. algorithm were also processed by using the polarimet-

We would also like to examine discrimination re- ric whitening filter (PWF) [1], which combines the
suits for different resolutions and different polariza- HH, HV, and VV polarization channels together in a
tions. The L.incoln Laboratory MMW SAR has a manner that optimally decreases speckle. The HH
resolution of 1 ft by I ft, but we can easily construct polarization results use only the HH polarization SAR
lower-resolution, single-look radar imagery from the data, and hence do not use the PWF imagery for the
data at hand. Additionally, the Lincoln Laboratory prescreener algorithm.
MMW SAR is fully polarimetric (fully polarimetric The candidates identified by the prescreener (ei-
SAR data allow synthesis of any polarization or corn- ther on targets or on clutter false alarms) are then
bination of polarizations). Many radar sensors are not grouped spatially. The grouping algorithm is a simple
fully polarimetric, and use only a single polarization. one; all hits within a target-sized area are grouped
The most common polarization used is HH; there- into a single detection. This grouping operation ex-
fore, we use HH data as well as fully polarimetric ploits some of the spatial information inherent in the
data in this study. We expect the best feature set to proximity of prescreener hits.
change, depending on our choice of resolution and The discrimination algorithm is run on all the
polarization. regions of interest selected by the prescreener and the

grouping algorithm. First, all the features described in
Choosing a Feature Set the section on discrimination features are computed

The method we use to choose the best feature set is for all regions of interest. The features are computed
straightforward. First, the data are prescreened by for the following four combinations of data: (1) 1-ft
using a simple two-parameter CFAR algorithm [2, resolution and PWF polarization, (2) 1-m resolution
10]. This stage is designed to eliminate (with a mini- and PWF polarization, (3) I-ft resolution and HH
mum of computation) only the most obviously non- polarization, and (4) 1-m resolution and HH polar-
targetlike clutter. The prescreening algorithm oper- ization. The features were originally tuned (in terms
ares on imagery that has already been reduced to a of the thresholds used in the feature calculations them-
resolution of I m by I m. The resolution was re- selves) for the 1-ft resolution, PWF case. The features
duced by taking a noncoherent average of each are used without modification for this case as well as
4-pixel-by-4 pixel non-overlapping box (a pixel has a for the i-ft resolution, HH polarization case.
nominal resolution of approximately 0.23 m). This Naturally, the polarimetric features cannot be cal-
method of resolution reduction has two advantages: culated for the HH polarization case because the
(1) it reduces the amount of data we need to process, polarimetric features use polarizations other than HH.
and (2) it reduces the speckle that is present in the We therefore use a reduced set of features. For the
high-resolution SAR imagery (the article by Leslie M. 1-m resolution cases, we retune the features by com-
Novak et al. in this issue gives an explanation of puting them for a range of thresholds, and we choose
speckle in SAR imagery). the threshold that provides the best separation be-

In the prescreener for this study we use a threshold tween targets and clutter false alarms for all datasets.
value that allows the detection of 80% of the targets. This retuning is done separately for the PWF case and
This percentage was chosen for consistency among the HH polarization case. Therefore, these features
datasets; it was also chosen by considering the num- are intended to give best-case results. Any use of these
ber of clutter chips that are passed to the discrimina- tuned features in other datasets can only approach the
tion stage. A higher probability of detection in the results shown in the article in general. Certainly, the

prescreener stage necessarily increases the number of 1-m resolution tests provide a better indication of the
clutter false alarms passed to the discriminator. Corn- performance of the discrimination algorithm than is
putation time and storage limitations preclude using likely to be obtained in a real situation.
a higher percentage value for the prescreener prob- The parameters necessary for a theoretical evalua-
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INTERPRETING PLOTS OF PD VERSUS FA/KMM2

'IHE METHOD OF EVALUATION for number of extra lines, or tails, for the particular set of inputs
the discrimination algorithm de- These extra lines (in blue) repre- being provided by the prescreen-
scribed in this paper involves plot- sent the improved performance er at that operating point.

ting a curve that shows the prob- provided by the discrimination As the threshold of the pre-
ability of detection (P) versus the stage of the multistage target-de- screener is varied, the set of in-

number of false alarms per square tection algorithm. Each extra line puts provided to the discrimina-
kilometer (FA/km 2 ). The measure meets the curve of the original tion algorithm varies as well. The
of FA/km 2 scales directly to the prescreener stage at a certain evaluation criterion for perfor-
probability of false alarm, which point. Each discrimination line mance in an ROC curve works

was theoretically derived for the emanating from these points .de- here as well; the line moving up-

discrimination algorithm in the scribes the operating characteris- ward and leftward indicates bet-
section entitled "Theoretical Anal- tic of the discrimination algorithm ter performance.

ysis of the One-Class Quadratic
Discrimination Algorithm." Such 1.0

curves are often referred to as re-
ceiver operating-characteristic 0.8- Discrmination _

(ROC) curves.
Figure A gives an example of a

simple ROC curve (in red). Bet- 0.6 -

ter performance is indicated in Q.

these types of plots by a curve 0.4 -

moving upward and leftward. A Prescreener

plot such as this one might be 0.2 -/

used to evaluate the prescreener
stage or the discrimination stage
separately. A more complicated 0.0 . .A I.

plot is necessary to evaluate the 0.001 0.01 0.1 1.0 10 100 1000

combination of the prescreener

and discrimination stages.
Figure A also shows an exam- FIGURE A. Example of a Pd versus FA/km 2 curve, which is also known as a

pie of a plot (blue and red) that receiver operating-characteristic curve, for a multistage target-detection

might be used to evaluate both algorithm. The additional lines represent the performance of the discrimina-
tion stage of the algorithm. Three of these performance lines are shown; in

the prescreener and discrimina- fact, an infinite number of them are possible, because their intersections

tion stages combined. Notice that with the prescreener curve are dictated by the level at which the prescreener

the original ROC has grown a stage is operated.

0on of the discrimination performance arc computed to hold arc checked in most cases. These checks are

in each case from a target region-of-interest dataset more fully detailed in tile section entitled "Confirm-
and a clutter failse-alarm region-of-interest dataset. ing the Gaussian Assumption." All combinations of

Additionally, tie assumptions necessary for the theory the discrimination features are tested by using the
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theory. Theoretical Pd versus P, plots are produced pretation of plots of Pd versus FA/ikm- is reviewed in
for each combination, and the best combinations are the sidebar entitled "Interpreting Plots of IPt versus
chosen for further analysis. The best combinations of FA/km-."
features are given in the section entitled "Best Fea-
tures for Discrimination." The results we get by using
the real data are then generated for the short list of All the target data used in this study were guthered
good combinations. The real-data results are then with the Lincoln Laboratory MMW SAR in
compared with the theoretical results; these compari- Stockbridge, New York. The targets consisted of two
sons are given in the section entitled "Real Data ver- datasets of the same targets in different deployment

sus Theoretical Performance." conditions. The first dataset, which we use for dis-
Performance evaluation is done by plotting the crimination algorithm training, is called the target-

probability of detection 'd versus the number of false training dataset. The second dataset, which we use for
alarms per square kilometer (FA/km 2). The measure discrimination algorithm testing, is called the target-
of false alarms per square kilometer is merely a rescaling testing dataset. There are three distinct clutter datasets;
of the probability of false alarm (Pg,) into an opera- two gathered at Stockbridge, New York, and a smaller
tionally meaningful measure. This rescaling is per- clutter dataset gathered in Concord, Massachusetts.
formed to remove the effect of sensor resolution (be- The first clutter dataset, which consists of mostly
cause a higher resolution image inherently gives more natural clutter, is called the Stockbridge natural-clut-
opportunities for false alarms to occur, the same I' ter dataset. Figure 13 is an example of this dataset; it
value at different resolutions means different num- shows a river with treelined banks (the river is the
bers of false alarms per square kilometer). The inter- dark area curving through the middle of the image).

FIGURE 13. SAR image of natural clutter in Stockbridge, New York. The sensor is flying parallel to the top of
the image, and the shadows extend downward in the image. Areas of high radar return are colored in bright
yellow; areas of low radar return are in dark colors. The dark band in the middle of the image is a river with
trees lining each bank. The smooth green areas are open fields.
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The remainder of the image is an open field. Freshly Figure 15 shows an example of imagery from this
plowed furrows in the open field can also be seen. The dataset.
radar illuminates the area from the top of the image;
therefore, the shadows cast by the trees point down- Best Features for Discrimination
ward in the image. The Stockbridge natural-clutter The method used to determine the best features for
dataset also includes some man-made objects (which discrimination is fully described in the earlier section
are impossible to avoid entirely in the Stockbridge entitled "Choosing a Feature Set." For two cases-the
area), including the faimhouse shown in an carlier 1-ft resolution, PWF data of the Stockbridge natural-
article by Novak [1]. The clutter in this dataset is clutter dataset and the Stockbridge natural- and
considered to be relatively benign. cultural-clutter dataset-we found the best features

The second clutter dataset is called the Stockbridge to be those given in Table 1. For the case of the
natural- and cultural-clutter dataset. This daraser was 1-ft resolution, PWF, Concord man-made clutter, the
gathered from a different area of the same Stockbridge feature set reduced to those features given in 'Fable 2.
collection site; it includes a farm-supply store that is As stated earlier, we did not attempt to pick the
shown in Figure 14 both as a SAR image and in an best features for the 1-ft resolution, HH-polarization
aerial photograph. The clutter in this dataset is con- case. Instead we evaluated performance with the same
sidered to be moderately difficult. features as the best-case features for the PWF data.

The third clutter dataset is a small dataset gathered For the I--m resolution, PWF, Stockbridge natural-
in Concord, Massachusetts, which is a few miles from clutter, and the natural- and cultural-clutter case, we
Lincoln Laboratory. This dataset, which we refer to as found the best features to be those given in Table 3.
the Concord dataset, consists entirely of man-made The "optional" qualifier given in the table means that
clutter, and is considered to be a very difficult dataset. the feature does not increase or decrease any perfor-

(a) (b)

FIGURE 14. (a) An optical photograph and (b) a SAR image of a farm-supply store in Stockbridge, New York. This

store is an example of a man-made clutter discrete. The store parking lot is in the bottom of each image. Although the

photograph and the SAR image were taken at different times, passenger cars can be seen in the parking lot in both

images. The bright spots in the middle right area of the SAR image are caused by various metallic objects in the yard

of the supply store.
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(b) (c) (d)

(a)

FIGURE 15. (a) A SAR image of man-made clutter in Concord, Massachusetts. The other three photugraphs

illustrate specific objects visible in the SAR image: (b) the church and steeple, (c) a spotlight that illuminates the

church at night, and (d) a house and a telephone wire suspended overhead. Note the bright columns along the

side of the church in the SAR image. These columns clearly correspond in number and placement to the areas
between the windows of the church in the optical photograph. Also notice the bright circular feature-the clock-

on the church steeple.
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Tablet1. Best Features for l-ft, PWF, Natural-Clutter Table 4. Best Features for 1-rn, NH, Natural-Clutter
Dataset and Natural- and C ultu ral-Cl utter Dataset Dataset and Natural- and Cultural-Clutter Dataset

Feature Description Feature Description

Fractal dimension Lincoln Laboratory Fractal dimension Lincoln Laboratory

Weighted-reink fill ratin I incoln Laboratory Diameter ERIM size

Diameter ERIM size Mean CFAR ERIM CFAR (optional)

Mean CFAR or

percent bright CFAR ERIM CEAR

Percent pure ERIM polarimetric little or no performance gain over the preSLicnCIIC
alo)nle.

Feature Choice Guidelines

Table 2. Best Features for 1-ft, PWF, Ani examiination of the list of bcst fea~tues t'roll) the
Man-Made Clutter Dataset previou.SWsCtion, 110111 wVith the scaiterplots shwn% i in

tile section entitled "( ontirmingi theC GauISSIan As-
sliliptin," eveas snic nterstin al iniportant

Feature Description Z"~tb.rvel oeiteetn i
gu idelines for chOOiilU' thle best featurets. Tihere it-re

Fractal dimension Lincoln) Laboratory two genecral criteria for feature Choice f'or this dis-

Percent bright CFAR ERIM CFAR 1r1uliinagr hn-epfa~uad~t~gnlt
Percen pureERIM olarietrcThle 'separation criterion is the commnon-senise consid-
Peren preERM plaimtrc ration thiat thle featuire must adcquatclvy separate the

targt tainng andtarget rostin-) dataset troiii tile

Clutter false-alarmi dataset. Thle orthiogonalitv critc-

Table 3. Best Features forl1-m, PWF, Natural-Clutter riod i that diffruient an eaure used sin irzc the dicintiln

Dataset and Natural- and Cultural-Clutter Dataset idatitifentftrSUsdllie scniaio
algOritllilil nluISt measuILre different at tributes Of' the
region of Interest.

Feature Description Unfortunately, wec caninot easily predict exactly
whichi attribu~te of at region of interest a fecature nica-

Fractal dimension Lincoln Laboratory 1
sures. Somer~inlies tWO featu~res that bewforchand wouldl

Diameter ERIM size sceem to be hiighlyk correlated utimunately exhibit a low

Percent bright even ERIM polarimetric degree (of correlation. We shiow anl exaniple of this

Percent pure ERIM polarimetric type of behiavior later inl tliis sectionl.

Thec hest features listed Iin Table I are a gOod cx-
Mean GEAR ERIM CFAR (optional) am11ple (of the orthogonality criterion. W\e see 11that thec

table incIludes two) of' thle three li.ncoln Laboratory
discrimiination features, whilch is ilot surprising be-

mlance ability w\ithl theCse datasets. bUt It couldi adid or cauise thle thrtee Lincoln iaboratorv f'eatures were de-
subtract a certain amiount (If' robustness for othecr signed w\ithl orthiogonality min ild. Ilie first t~eaturc
datasets. The1 best f~eatures for the 1-Iin resolutiot(n, (fractal dimension) exploits the spatial relationshilp of'
H H-polari/ation case are givenl In Table 4. Fot thlis thle top Nscattercrs Iil t~le regionl of interest. svliile the
caise. Iloweve\,r, the d-iscrimination algOrith ini p)rovides second feature (weighited-rank fill ratio) exploits thle
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distributio,0 of reflected power among all the scatter- The orthogonality criterion holds here as well, except

ers on the target. Clearly, these two features were that the two features not included, which were in-

designed to measure different characteristics of the cluded in Table 1, no longer provide reasonable sepa-

region of interest, ration between targets and clutter false alarms.
The three other features included as best features For the case of I -m resolution, there is an apparent

in the case shown in Table 1 all come from the ERIM exception to the two criteria given above in the best

discrimination features. Interestingly, the three cho- feature choices. Notice that lable 3 contains two

sen features each come from a different subset of ERIM polarimetric features. Figure 10 shows a
teatures" the lirst comes from the ERIM size teatures, scatterplot of these two features (percent bright even

the second comes from the ERIM (FAR features, and percent pure) for the l -m resolution datasets.
and the third comes from the ERIM polarimetric From the scatterplot we can sec that these two tea

features. Even if the ERIM feature, were not designed tures are, in fact, uncorrelated and are thereft-rc or-
with the orthogonality criterion in mind, we find it thogonal in some meaningful sense. Apparently, in

interesting that the choice of best features naturally the l -m resolution dataset the thresholding involved

selects one feature from each category, in calculating the percent-bright-even feature causes

A subset of the features listed in Iable I works best this feature to measure soiiething other than the

in the man-made clutter dataset, as shown in 'Fable 2. polarimetric properties of the region of interest. The

* Stockbridge natural-clutter false alarms * Target testing

* Stockbridge natural- and cultural-clutter false alarms 0 Target training
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FIGURE 16. Scatterplot of percent bright even feature versus percent pure feature for 1-rn-by-i-rn resolution data.
These two features are uncorrelated because the data points do not fall along a straight line.
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five features chosen in Table 3 for the I -m resolution 1.0

case obey both the separation and orthogonalitv crite- Discrimination

10.8 Prescreenerria given above. The same holds true for the best Theory ,

features in the HH-polarization case, which are given 0.6

in ible q*. at

Real Data versus Theoretical Performance 0.4

[his section gives the real-data prescreencr and dis- 02 "I0.2

crinination results in the i-orin of plo ,, vcrsus
FA/km-. These plots arc explained in the sidcbar 0.0 .

entitled "Interpreting Plots of Pd/vcrsus FA/km-." We 0.001 0.01 0.1 1.0 10 100 1000

also plot on the same graphs the predictions corn- FA/km 2

pIed from thle theoretical analysis given inl the sec- FIGURE 17. Comparison of real data and theoretical re-
lion entitled "Theoretical Analysis of the Onec-Class suits for the 1-ft-by-i-ft resolution, PWF, Stockbridge natu-

Quadratic D)iscriinination Algorithmi.-" In all cases, ral-clutter case.
the theory and real data coincide closely. This fact 1 .0 1 1 1III 1 111 T -1 1 r I I -r~ll I I ....] I1 1 11 1 I I I II

demonstrates that the one-class quadratic discrimina- - Discrimination
tion algorithm is Well understood as it is implementcd 0.8 Prescreener
in tilhe Lincoln Laboratory multistage target-detection ----- Theory

algorithm. 0.6 -

Figure 1 7 gives the combined prescrecncr and dis- .,'
crimminjion retsults for tile -ft resolution, PWF data 0.4 -
for the Stockbridge n1,1 Li:d-clUitter datasct, while Fig- ,

tire 18 givsc the prcscrccncr and discriminaation re- 0.2 -
stilts for the Stockbridge natural- and cultural-clutter /,,

dataset, and Figure 19 gives the prcscrcencr and dis- 0.0 • , , . i --- .,, ...

crimination rc.sults for the Concord nman-inadc-clut- 0.00I 0.01 0.1 1.0 10 100 1000
tcr dataset. Figures 20 and 21 show the prcscrecncr FA/km)

and discrimination results for the Stockbridge natu- FIGURE 18. Comparison of real data and theor -,cal re-

ral-clutter dataset and the Stockbridge natural- and suits for the 1-ft-by-i-ft resolution, PWF, Stockbridge natu-
ral- and cultural-clutter case.

cultural-cluttcr datasct, respectively. Both results are

for 1-ft resolution, HH-polarization data. 1.0 . ...-q , -- q -- q
The remaining results arc for the I-rn resolution ... Discrimination

case. Figures 22 and 23 show the prescrcener and 0.8 Prescreener

discrimination results for the Stockbridge natural- ----- Theory

clutter datasct and the Stockbridge natural and cul- 0.6 1
tural-clutter dataset, respectively, for pWF data. Oi,
Figurets 24 and 25 show the prcscreencr and discrimi- 0.4 ,

nation results for the same two datascts for the 0.2

H H-polarization case. 0.2
I '/ l

Polarization Comparisons 0.0 ... ... .
0.001 0.01 0.1 1.0 10 100 1000

We can compare the discrimination results from the FA/km2

P/F data and the H H-polarization data for thle same FIGURE 19. Comparison of real data and theoretical re-

cases to draw a conclusion regarding the advantage of suits for the 1-ft-by-i-ft resolution, PWF, Concord man-
using a fully polarimctric radar versus using the more made clutter case.
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FIGURE 20. Comparison of real data and theoretical re- FIGURE 23. Comparison of real data and theoretical re-

sults for the 1-ft-by-i-ft resolution, HH-polarization, suits for the 1-m-by-i-m resolution, PWF, Stockbridge
Stockbridge natural-clutter case. natural- and cultural-clutter case.

1.0 , ,, r, 1.0 ' I I ' '.-I I I I , I I . ," I I,' ,

Discrimination - Discrimination

0.8 Prescreener 0.8 - Prescreener

0.6 - 0.6

0.4 ( 0.4

0.2 - 0.2

0 .0 .. .... 0 .0 1 1 . . .. I 1 -. 1 1 1 1 .......
0.001 0.01 0.1 1.0 10 100 1000 0.001 0.01 0.1 1.0 10 100 1000

FA/krM2  FA/km2

FIGURE 21. Comparison of real data and theoretical re- FIGURE 24. Comparison of real data and theoretical re-

sults for the 1-ft-by-i-ft resolution, HH-polarization, suits for the 1-m-by-l-m resolution, HH-polarization,
Stockbridge natural- and cultural-clutter case. Stockbridge natural-clutter case.
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FIGURE 22. Comparison of real data and theoretical re- FIGURE 25. Comparison of real data and theoretical re-

sults for the 1-m-by-i-m resolution, PWF, Stockbridge suits for the 1-m-by-i-m resolution, HH-polarization,
natural-clutter case. Stockbridge natural- and cultural-clutter case.
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common HH single-polarization radar. We see that ideally eliminates all natural-clutter false alarnms
the performance increase is significant (a reduction of from further consideration, passing onls targets and
one to two orders of magnitude in false-alarm rate for man-made clutter false alarms to the casNification
equal probabilities of detection) in both the 1-ft reso- algorithm.
lution and the I -m resolution cases. The performance Fifteen discrimination features were evaluated for
difference is more pronounced for the higher-resolu- this study'; three of the features were developed by
tion data. Lincoln Laboratory and the remainder were devel-

In general, during the course of this study, we oped by the three STAR contractors. These features
noticed that the combination of higher-resolution were modified to account for the different types ,f
data and fully polarimetric data provided a significant data used in this study,, and the best set of features was
increase in performance. Either capability alone is not chosen for a number of different datasets and a num-
nearly as effective as the two capabilities together for bet of different types of data. The best features re-
the discrimination features we have studied in this mained constant from the natural-clutter dataset to
article. In other words, building radars with both the natural- and cultural-clutter dataset, which was a
higher resolution and with fully polarimtric capabil- surprising and pleasing result. For best performance.
ity makes sense. we needed to select different feature sets for PWF and

In the 1-in resolution case, the difference betrxeen HH-polarization data, as well as for 1-ft and 1-in
the PWF data and the HH-polarization data is clear, resolution data, which was not a surprising result.
Using the HH data alone, the discrimination algo- We evaluated the features by using a theoretical
rithm provides little or no performance improvement expression that accurately predicted the real-data per-
over using the prescreener algorithm alone. The fea- formance of the discrimination algorithm. This accu-
tures for the 1-m, HH-polarization case were tuned racy reflects a good understanding of how the dis-
specifically for these datasets, so this result should be crimination algorithm functions as a part of the
considered a best case. Clearly, there is no point in Lincoln Laboratory Multistage target-detection algo-
using the discrimination algorithm with these fea- rithm for SAR data.
tures for the I -m resolution, HH-polarization dataset,
because it provides little benefit and it requires addi- Acknowledgments
tional computational capacity. The authors would like to thank Dr. Leslie Novak for

the help and encouragement given throughout the
Resolution Comparisons course of this study.

We can also compare the results from the 1-ft resolu-
tion case with the results from the I-m resolution
case. We see that the higher-resolution data allows a
performance increase of more than an order of mag-
nitude in terms of the false-alarm rate for a given
probability of detection. This performance increase is
approximately constant over the different cases given
in Figures 17 to 25.

Conclusion

In this article, we discuss and evaluate the discrimina-
tion algorithm used in the Lincoln Laboratory multi-
stage target-detection algorithm. This one-class qua-
dratic discriminator uses features calculated from SAR
imagery. The discrimination algorithm uses candidate
regions of interest identified by the prescreener, and
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Improving a Template-Based
Classifier in a SAR Automatic
Target Recognition System by
Using 3-D Target Information
Shawn M. Verbout, William W. Irving, and Amanda S. Hanes

U In this article we propose an improved version of a conventional template-
matching classifier that is currently used in an operational automatic target
recognition system for synthetic-aperture radar (SAR) imagery. This classifier

was originally designed to maintain, for each target type of interest, a library of

2-D reference images (or templates) formed at a variety of radar viewing

directions. The classifier accepts an input image of a target of unknown type,
correlates this image with a reference template selected (by matching radar
viewing direction) from each target library, and then classifies this image to the

target category with the highest correlation score. Although this algorithm

seems reasonable, it produces surprisingly poor classification results for some

target types because of differences in SAR geometry between the input image

and the best-matching reference image. Each reference library is indexed solely

by radar viewing direction, and is thus unable to account for radar motion

direction, which is an equally important parameter in specifying SAR imaging

geometry. We correct this deficiency by incorporating a model-based reference

generation procedure into the original classifier. The modification is
implemented by (1) replacing each library of 2-D templates with a library of

3-D templates representing complete 3-D radar-reflectivity models for the target

at each radar viewing direction, and (2) including a mathematical model of the
SAR imaging process so that any 3-D template can be transformed into a 2-D

image corresponding to the appropriate radar motion direction before the

correlation operation is performed. We demonstrate experimentally that the

proposed classifier is a promising alternative to the conventional classifier.

N AUTOMATIC TARG(ET RLCOGNITION (ATR) classifier. The tinction of the classifier is to take input

system is an integrated collection of ,lgo- measurements that represent detected targets and cat-

rithms designed to process sensor measure- egorize these inputs according to target type. The

mcnts so that targets can be efficiently detected and classifier is designed with the assumption that each

identified. The algorithms that comprise an AIR sys- input belongs to one and only one category from a

term are applied on a computer and are organized so predetermined set (e.g., tank, truck, gun), and that the

that human intervention is not required. input has certain observable characteristics that aid in

An important component oftany ATR system is its its assignment to this category. The classifier output

5.3
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Input 10 Presrer Discriminator lsierClassifies
image targets

Rejects imagery without Rejects natural-clutter Rejects man-made
potential targets false alarms clutter

FIGURE 1. Block diagram of the three-stage SAR automatic target recognition system developed by Novak. The input
consists of SAR imagery representing many square kilometers of terrain and potentially containing several targets of
interest; the output consists of locations and classification labels for these targets. This article proposes an improved
version of the classifier stage.
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gorithm. The one-class version of this classifier is sequently to have a low correlation score.
implemented in the following way. For a particular An immediate solution to this problem is to in-
target of interest, the classifier has a database of stored dlude in the classifier database additional reference
reference images, each formed by using a different images formed by using the SAR geometries that are
radar viewing direction. The reference image whose not currently represented. This solution is undesir
associated radar viewing direction best approximates able, however, because it would require a costly data
that of the incoming test image (i.e., the incoming collection, and it would also increase the storage re-
region of interest) is called up from the database and quirements for the database by roughly an order of
is correlated with the test image to generate a match magnitude.
score. If this score exceeds a predetermined threshold, In this article we describe a more elegant solution
the classifier declares that a target of interest is present. for improving classifier performance than the mere

The template-matching algorithm is attractive be- tenfold augmentation of the reference set described
cause it is readily implemented on a computer and it above. This new solution, which maintains the tradi-
has an intuitively pleasing structure. For a database tional template-matching engine, calls for two major
formed by using a typical imaging configuration, how- modifications to the baseline classifier: (1) the re-
ever, the classifier produces poor results for some placement of the present set of 2-D reference images
target types. This fact is not surprising, because the with a set of 3-D templates, and (2) the incorporation
system was originally designed to process images of a mathematical model of the SAR imaging process
formed with a fixed SAR geometry, whereas in the so that any 3-D template can be appropriately trans-
most commonly used imaging configurations the SAR formed to synthesize a -D reference image for the

geometry is continually changing. In this article, we correlation operation. Later in this article we describe
seek to generalize the structure of the classifier to a novel method for creating 3-D templates from cur-
account for variability in SAR geometry. rently existing 2-D target images.

SAR geometry can be characterized as a function The body of the article is divided into three major
of two parameters-radar viewing direction and ra- secti( is. In the first section we describe in detail how

dar motion direction. The baseline classifier does not the baseline classifier works. In the second section we
account for radar motion direction, however, and is demonstrate the problem with this classifier and ex-
therefore equipped with an incomplete set of refer- plain why this problem exists. In the third section we
ence images in its database. The baseline classifier was describe specifically how we can modify the baseline
designed with the assumption that the radar viewing classifier to improve its overall performance. Finally,
direction is the only parameter that can be varied to we summarize the key points of the article and sug-
produce different images of a target. gest directions for future work toward improving clas-

In reality, the direction of radar motion is an equally sification performance in a SAR ATR system.
important parameter in defining the SAR imaging H
geometry, which implies that two images formed with ow the Baseline Classifier Works
the same radar viewing direction, but with different The algorithm used by the baseline classifier is de-
radar motion directions, will look different. Even scribed schematically in Figure 3. As shown in this

though the same physical target scatterers are illumi- figure, the input to the classifier consists of two com-
nated in both cases, the 3-D scatterer positions be- ponents. The first input component is a 2-D test
come mapped to two different 2-D SAR image loca- image representing a region of interest from the origi-
tions. Because the baseline classifier ignores the nal SAR dataset. As mentioned above, this image has
direction-of-motion parameter, it often correlates a passed through the first two stages of the ATR system
test image and a reference image that are formed with (i.e., the detection and discrimination stages) and

different SAR imaging geometries. These differences thus contains an object that appears sufficiently
in imaging geometry cause the test image and refer- targetlike to be considered for classification. The sec-
ence image to have dissimilar characteristics, and con- ond input component is a pair of angle values that
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Database

Target

FIGURE 3. Schematic description of thre algorithm used by the baseline one-class classifier. Tile classifier uses the aspect
angle (t and the depression angle 1) to select a 2-D reference image from the database. This reference image is then
correlated with the input test image; if the correlation score p) is greater than or equal to the threshold T, the target present
decision is declared.

definec the radar viewing direction with respect to tile fo~r In~teger values of its a-01B'umentS Such that I( m, ii) is"

miaged object. These valties are esti mates of the angles equal to the amplituide of the test image at thle range
(t (thle aspect) and 1) (thle ,Iepressln), which are definecd and cross-ranle locat ion (mn.n) for 1 :5 il s AlI and
pictorially inl Figure 4. 1 -5 n:5 N, and is equal to /ero foar allI other valutes of"Iln

Because thle database is Conlrenl telltls' indexed ac- and n. Let the fI'mict ion R( b e deft ned analo-
cordling it) these two radar viewing angles, the classi- gIOuSlv with respect to thle referce'IC i1mage0. [hen thie
flecr canl readily select the reference imiage woea- correlation score p) for the two im1ages is defined lby
peeCt anld dep~res-sion are closest to thle inpu)t estiml-ates

of (f anld 1) computedI fomr the test imiage. O nce the MxII*il )RI+Il 1
appropriate refrnc Imag is selected, it is scaled so

that thle sumll of the sqltiares of- Its pixel valutes Is equtal
to tint tv: thle test Imnage is also scaled] inl this -way. Next, where sis thle overall normal izat ion Lactor given iw
the normval ized test and refeCrenice MIMageS are corre-
lated to yield a correlation score p whose valtue 'is viA.,

between 0 and I1. m,0IOl;)
T his correlation operation is mathemnatically de-

fillted ill thle ft dlowi rig way'. L et tis asstiltue that thle test
anld reCf'reiice I niages iare equlal Ill sizeC, each havill iiA/ As shown i hmr 3thclsiericacs t hata
cells In thle ranige dimiension anld N I cells tinlte cr-oss- targOet is presenlt inl thle test Image1" only if)p is "reaiter

rane imnson lt hefuctoni( ) e debried than11 or equlal to thle presel-ctedl threshold r.
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the airplane flies in a straight line at constant altitude.
and the radar antenna is steered continuously so that

it always points in the direction of the target.
With the radar beam illuminating the target like a

spotlight throughout the flight, a new image of the
target can be formed approximately every degree of

S... azimuth. Each new image can be used as a reference
for the classifier database. A set of reference images
representing 3600 of aspect coverage is created by

flying four such linear paths to view the target from
all sides, as shown in Figure 6.

Although spotlight mode is not the only mode that
can be used to generate reference images, it is the
most convenient and efficient mode for imaging a

S" target at a variety of radar viewing angles. TO see why
this statement is true, consider the database of spot-
light imagery that can be generated by flying the basic

FIGURE 4. Pictorial definition of the aspect angle a and pattern shown in Figure 6 at a sequence of increasing
the depression angle 0. These angles specify the radar altitudes. Clearly, if the difference between successive
viewing direction with respect to the imaged object. flight-path altitudes is small enough, then the data-

base will contain a representative image of the target
We can more clearly understand the fundamental that is close to any desired aspect-angle and depres-

problem with the baseline classifier by analyzing how sion-angle pair. Moreover, this complete coverage is
the target reference images are generated for the clas- obtained without ever having to move the target. In
sifier database. Each reference image is formed from spite of the many advantages to using this kind of
data collected by the Lincoln Laboratory millimeter- data-collection procedure, there is a serious deficiency
wave airborne radar [1]. Once a target of interest is associated with it. This deficiency is analyzed in detail
deployed in an open area, the data are collected by in the next section.
using a special mode of the radar known as spotlight
mode, which is illustrated in Figure 5. In this mode, y the Baseline Classifier Needs Improvement

Now that we have discussed the method used to

generate target reference images for the database, we
"are better equipped to analyze why the baseline classi-
fier can make a gross error in categorizing an input
test image. In this section we explain how such
misclassifications occur, even though the database is
densely populated with target reference images from

all desired radar viewing directions.
We begin by using Figure 7 to demonstrate what is

wrong with the baseline classifier. Figure 7(a) shows

an optical photograph of an M48 tank, and Figures
7(b), 7(c), and 7(d) show three simulated SAR images
of the tank. The SAR images are color coded with a

FIGURE5. Imaging configuration for spotlight-mode SAR. scale that makes a gradual transition from black (low

In this mode the airplane moves in a straight line at a

constant altitude, while the antenna is steered continu- intensity) to green (medium intensity) to white (high
ously so that it always points at a fixed patch of terrain, intensity). In each SAR image, the front part of the

1'0 0;' , 11, ;%Lý 57
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tank is pointing toward the upper left corner of the test image could be erroneously labeled as containing
image. All three SAR images shown in this figure were no target.
formed by using the same aspect angle and depression The only difference between the SAR imaging con-
angle. In other words, the same scatterers on the figurations used to generate the images in Figures
target were illuminated by the radar from the same 7(b), 7(c), and 7(d) was the direction in which the
viewing direction for each image. Note, however, that radar was moving with respect to the viewing direc-

the images look dramatically different. This phenom- tion. This change alone is sufficient to yield SAR
enon contradicts the key design assumption that fix- images that look quite different, and yet the direc-

ing the radar viewing direction uniquely specifies the tion-of-motion parameter has been completely ig-

SAR image of the target. nored in the design of the baseline classifier.
"To understand how the existence of three such To see how this parameter directly affects the ap-

images affects the classifier, let us assume that Figure pearance of a SAR image, we devote much of this

7(b) is a stored reference image and that Figure 7(d) is section to the description and application of a widely

an incoming test image. Because the two images were used mathematical model of the SAR imaging pro-
formed by using exactly the same radar viewing direc- cess. In particular, we model the SAR transformation
tions, the image in Figure 7(b) would be chosen as the as a projection of the 3-1) distribution of target scat-
reference image most likely to match the test image. terers onto a 2-D image plane, and we demonstrate

But because the two images are so dissimilar, their the usefulness of this model by a simple example.

correlation score would be low, and consequently the The projection model is conceptually important

I I

tI I I

FIGURE 6. Top view of the flight path used to create a set of target reference images representing 360' of aspect coverage.
A sequence of the generated reference images is shown notionally at right.
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(a)

o -40' f = 0° o = +40W

(b) (c) (d)

FIGURE 7. (a) Photograph of an M48 tank. The computer-generated images in (b), (c), and (d) are simulated SAR images of
an M48 tank, all created with the same aspect and depression angles but with different squint angles qi, where qi specifies the

direction in which the radar is moving with respect to the viewing direction. The SAR images are color coded with a scale
that makes a gradual transition from black (low intensity) to green (medium intensity) to white (high intensity). In each SAR
image, the front part of the tank is pointing toward the upper left corner of the image. (The SAR images were generated with

the SARTOOL signature simulation software developed by The Analytical Sciences Corporation.)

lfOr the remaiinder of the article, particularly in the location known as the ,im/powit. \%"C havei In posCd a
final cction ill which lwc incorporate this model into mthacntical stirutcure on tiiis gcomictrv 1w tisi .ta
,a imllproved version oftthc baseline classitier. We no% (Cartesian COord i nate s\'StCi (known as thie /1',01-(1//-

rep-, 'rC to introduce thle projection tiodel with tl ome oidim, -.qsstcm) \whose origin i.oineid.,s with the
ha indamen tal de~finit io'.s aSoSCiatCd With tlhe SAR ira- anipoint, and wvhosc coordini.it locatilns (.v.IV..) are

at~tng process,, lileas, rcd in tefrli, tI the iti ih ba,,is vcctors x. ,. and

z (Shown Ill ,hi ie). In th ,iS S\'StCnlI. wC oSC tile onve.t-
Dli)i'. jwr/,h o!/'A/AR I.iziic¢ (e t)irol that Y, points in tIl dirCction Of radar LIo1tiOh.

Figt~re 8 ilhItr.Ctie the aI',s ic elemeCts that dfLinC thIe Also. note that in the vicility of the aiipinit xs.

spot!ith t SAR imai int tC..eontrN,. In tih is fiurc, we tiiodel the local earth aur.e a, a gri-nudl,/auu dcfincd
see the airborne r,.lAdr ats it mo\'C, in a ,taight line by the CetlMtioil Z7 0.
whie its, 1ntCH is, stCeecd to ilitiniinate I fiXed ground Ihc line that pasesC', throlgh tile radar p."'ition and
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FIGURE 8.l of the basic elements that define the spotlight SAR Imiaginog geonmetry.
Two cooi di nate systemis ate tepresenited that share a common origin coinciding with the

aimpo int Thle vvorld coordi Inate SYMteII (11) lWire) IS Clefi ned iibY the 1111it VP.CtO iS X, Yand Z.

The tadai coot(i iiate system (in red) is defined hy the nirt vectors r, c and n.
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this justification and merely provide a concise math- Because the cross-range vector c' must Lle perpendicu-
ematical description of our SAR imaging model. Fol- Lar to both r and ýi, it is constructed by using the
lowing this description, Akc gisc an application of our formula
SAR imaging model in the form of a simple visual
example. - sin 0 cos 0 cos- 0

A Mathematical Moa'elfir SAR Imaging =n×x-= k cos- 0 cos +- sin- a

We begin our description of the SAR transformation sin 0 Cos sin

by introducing the radar coordinate system (shown in
red) in Figure 8. The origin of this Cartesian coordi- From this coordinate-system construction, we sec that
nate system coincides with the aimpoint, and the the vectors r and c form an orthonormal basis tfr the
coordinate locations are represented in terms of the slant plane, just as the vectors x and y^ tfrm an
unit basis vectors i (the range vector), ^ (the cross- orthonormal basis for the ground plane.
range vector), and fi (the s/ant-plane normal t'ector). Now we consider imaging a point reflector at loca-
This coordinate system can be defined in terms of the tion p = p p, p. Pl in the world coordinate system.
basic elements of the spotlight SAR geometry defined We can express this point in the radar coordinate
above, system by using the standard dot product to project

We begin with the observation that the range vec- the point p onto each of the unit basis vectors r, c,
tor r, which points in the direction of the radar line and ii. The resulting vector q can be written in radar
of sight, can be expressed in world coordinates as coordinates as

rCos q. Cos (I ,

r = sin~ cos( . q = q: p c

sin 0 q,I

TO check that this expression is correct, the reader can According to our basic model for the SAR transfor-
easily verify the following three properties of r^: (1) i mation, we must now project the 3-1) vector q onto
is unit length, (2) the projection of i onto the x-y the 2-I) slant plane to obtain its location in the SAR
plane is rotated counterclockwise by the angle 0 with image. We can do this projection by retaining the first
respect to the x-axis, and (3) " is tilted downward by two components of q and neglecting the third com-

the angle 0 with respect to the x-y plane. ponent, because the entire third dimension of the
By using the vector r and the world-coordinate radar coordinate system becomes collapsed in the

basis vector , = [ 0 1 0 1 T both of which lie in the projection process. This procedure gives the slant-
slant plane, we can construct the slant-plane normal plane coordinates of the original point reflector as
vector Li with the cross-product formula

P, cos o costl + P1 sin 0 cos) - p_ sin t)
sin 0I

x k 
1q"] = -kp, sinocosocos20a - I1 x ;11I ,I

X(Cos 0 cos (I, rs

L't J + kpy (cos - cos- ( + sin " U)

where k is the normalizing constant required to make
a tinit-length vector. The value of k is given by + kpF sin 0 cos 0 sin 0

k =(2)

\sinl 0 + cos2 0cos ( We can use the above expression for the range and
cross-range coordinates of a point to show math-

dO( !:'' 11 fij•'q l 0 ! • . I l 'ff/ • R(I /' I ,0 ) ,; , 6 1
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cmatically that when the point is imaged at a fixed As before, we compute the slant-plane coordinates of

aspect angle and depression angle, but at different p by substituting these values into Equation 2. This

squint angles, it will appear at different SAR image yields the 2-D) slant-plane location s,, given by
locations.

'16 dcrtionstratc this Concept, we Conduct two im1-

aging experiments in which we keep the aspect and

depression angles constant but allow the squint angle
to vary. In particular, for the first imaging experiment

we use the values U = 0, i = .7r/ 4 , and 0 = 0; for the For the two different squint angles above, the range

second experiment we use the values t = 0, 1) = ,r/ 4 , coordinate of the imaged point remains constant but

and p = r/4. In each experiment, once these angles the cross-range coordinate changes dramatically. This

have been fixed, we consider imaging a point p that observation is an example of the more general result

lies on the principal target axis in the ground plane at that, given a fixed radar viewing direction, a change in

a distance of one unit from the aimpoint. Based on the squint angle causes the cross-range coordinate of a

the diagram in Figure 8, this point must have the point to change. Thus the above example provides
coordinates quantitative proof that the slant-plane location of a

point is not uniquely determined by the aspect and
cos~idepression angles alone.

P = sin . (3) In the next subsection, we give a simple qualitative

p, example that visually demonstrates the effects of the
squint angle on the appearance of a SAR image, and

For the first imaging experiment (with the angles thus demonstrates the importance of incorporating

t = 0, 0 = -r/ 4 , 0 = 0), we can readily verify from information about the squint angle into the baseline

Fquarinn I that 4' = 1, :"id from Equation 3 that classification algorithm.

- I ' SAR Imaiging E-xample

p = . Figure 9 (a) shows a perspective view of a simple ob-

ject that is being imaged by an airborne SAR. The
object consists of a square grid of point reflectors

We can now compute the slant-planc coordinates of p (shown in blue) in the ground plane, and one addi-

by substituting these numerical values into Equation tional point reflector (shown in red) above the ground

2. This computation yields the 2-D slant-plane loca- plane and directly over the center of the grid. Figure

tion s, associated with the first set of imaging angles; 9(b) shows a top view of the same imaging configura-

this location is given by tion. From this top view, we can see that the grid of
point reflectors is perfectly aligned with the projected

%2 =radar line of sight; we arbitrarily define this orienta-

tion to correspond to a 0' aspect angle. The object is
also being imaged at a 0' squint angle, because the

For the second imaging experiment (with the angles radar is looking in a direction perpendicular to the

t = 0, 0 = 7r/4, p = :r/4), we find that k= 2/13 , and line of flight.

Figure 9(c) shows the same imaging configuration

once again, but from a viewing direction perpendicu-
- lar to the slant plane. Thus we see the projection of

the object onto the slant plane, which (according to
0 our mathematical SAR model) corresponds directly

to the result produced by the SAR imaging process.

62 r F[•{l ' %~~A Dq tP• ill,[b %[,,[ "
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Because of the projection operation, the grid of point shown in Figure 10(b) we can see that the aspect
reflcctors (in blue) appears fo0reshor'cncd in the verti- angle has not changcd (i.e., the grid is still aligned
cal dimension, and the point reflector above the ground with the projected radar line of sight), but that the
(in red) appears just above the grid. Finally, Figure squint angle has changed from 0" to 45".
9(d) shows an image-sized portion of the slant-plane Figure 10(c) shows the object projected onto the
proicction (displayed according to the convention that slant-plane under this new imaging configuration.

range increases in the downward direction) that rep- The grid of point reflectors (in blue), which appearcd
resents the SAR image of the object at a 0' aspect as a diamond from the top view, now appears as a
angle and a 00 squint angle. foreshortened diamond in the vertical dimension be-

Figure 10(a) shows a perspective view of the same cause of the projection operation; the additional point
object being imaged with a different SAR geometry. reflector above the ground plane (in red) appears over
For this example, we assume that the slant plane has the tupper corner oftthis diamond becausCe ofits height.
been adjusted so that the depression angle matches Figure 10(d) shows an image-sized portion of the
that of the previous example. From the top view slant-plane projection (again displayed according to

(a) (b)

::'-

(a) (d)
[oo oo*oo

.g mg
an ootlo

(c) (d)

FIGURE 9. Illustration of SAR imaging as a projection (broadside case). The collection of point reflectors being imaged is
shown from (a) perspective view, (b) top view, and (c) slant-plane view. (d) The resulting SAR image can be interpreted as
an image-sized portion of the slant-plane projection, as indicated by the orange outline in part c.
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the convention that range increases in the downward

direction) that represents the SAR image of the object c Sensiti'ity oJBase/iw (Jasii/er to (Jianges i .ilui

at a 0' aspect angle and a 45' squint angle. The simple geometric examples given in Figures L

'[he primary difference between this SAR image and 10 show that we can produce twso diffierent ill-

and the one shown in Figure 9(d) is that the point ages of an object by using two different squint angles

reflectors now appear shifted in the cross-range di- fior a fixed set of aspect and depression angles. From a

mension. The shift for each reflector is not, however, qualitative standpoint, these difterences adverselY af-

a simple fIunction of the range of the reflector, as it fcct the pcrf-ormance of the baseline classifier, because

may appear at first glance. Rather, the shift is a func- the classifier has onily one reference image for each

tion of the 3-1) location of' the reflector, which is aspect-angle and depression-angle pair. In this see-

demonstrated by the large shift of the point reflector tion, %,e describe an experiment that demonstrates

above the ground plane. This shift has caused the quantitatively that the classification statistic used by

reflector to move out of alignment with the middle the baseline classifier-the correlation scorc-changes

column of the grid, which can be seen by comparing significantly as a function of squint angle tor a fixed

Figures 9(d) and 10(d). aspect-angle and depression-angle pair.

* * . ... .

%*% ....

(a) (b)

(C) (d)

FIGURE 10. illustration of SAR imaging as a projection (forward-looking case). The sequence of figures-(a) perspective
view, (b) top view, (c) slant-plane view, and (d) resulting SAR image-corrmsronds directly to the sequence shown in
Figure 9.
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FIGURE 11. Depiction of the imaging configurations used to quantify the robustness of the baseline classifier with respect
to variations in squint angle. The test imiages, which are shown notionally below their respective configuration diagrams,
were all formed by using the same aspect angle ((t = 45') and depression angle (Ii= 45'), but each had a unique squint angle
(j (a multiple of 5" in the range fromi -40 to +40').
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1.0 present a novel technique for creating 3-) templates
"- from our existing database of 2-1) reference images.

0.8 Finally, in a continuation of the experiment discussed
in the previous section, we show that the proposed
classifier is much more robust with respect to changes

~0.6o in squint angle than the baseline classifier.
oC
;L 0.4 Description of'3-D 7lmp/ates

o A 3-D template is a finely sampled 3-1) grid of points
U 0.2 representing the volume occupied by the target of

interest, in which each grid point corresponds to a
0 scatterer on the target. Each 3-1) template is associ-

-40 -20 0 20 40 ated with a distinct radar viewing direction, specified
Squint angle (degrees) by the aspect angle ai and the depression angle 0. We

FIGURE 12. Plots of correlation score versus squint angle thus index the collection of 3-D templates by these
for the baseline classifier (solid line) and the proposed radar viewing angles, and we let 7',, denote the tem-
classifier (dashed line). The test images used for the ex- plate corresponding to the particular pair ((t, 0). The
periments were those described in Figure 11. The 2-D value stored at each point in the template Ie, repre-
template used by the baseline classifier and the 3-D tem- sents the radar reflectivity of the scatterer at that
plate used by the proposed classifier both had aspect and point, when the target is illuminated from the direc-
depression angles matching those of the test images.

tion corresponding to (at, 0). To prepare for the devel-
suggests that the performance of the baseline classifier opment that follows, we assume that the template I'
is sensitive to changes in squint angle. Thus, to im- contains K grid points. The location of the jth point
prove the baseline classifier we must account for the in the 3-D grid is denoted by pi, and the radar-
effects of squint (in addition to the already recognized reflectivity value stored at this point is denoted by Ai,
effects of aspect and depression) on the process of for j= i ..... K
SAR image formation. Tb transform 7T, into a 2-1) reference image, we

use our projection model of the SAR imaging process.
How to Develop a Better Classifier Specifically, we project the points in the template 1,O,
Our analysis in the previous section suggests that we onto the slant plane defined by the depression angle 0
can improve the performance of the baseline classifier and the squint angle o, to yield a reference image that
by taking into account the effects of both radar view- we denote by I,,0. Let le,,,(m, n) be the value at the
ing direction and radar motion direction on the SAR range/cross-range location (m, n) in this reference
imaging process. In this section we propose a new image. The relation between the values in the tem-
classifier that maintains the conventional template- plate 7,,, and the reference image value l,,,(in, n) is
matching engine, but calls for two major modifica- given by
tions to the baseline classifier: (I) the replacement of
the present set of 2-D reference images with a set of A,,l(m,n) = A
3-1) templates, and (2) the incorporation of our math-
ematical model of SAR imaging as a projection so
that any 3-1) template can be transformed appropri- where Q,,,)(m, n) is the set of indices specified by
ately to synthesize a 2-1) reference image for the
correlation operation. P, projects to location

We begin by giving a definition of a 3-D template, in) = (i, u) in the SAR image

anJ we then describe how a 3-1) template is trans- t
formed into a 2-1) reference image. In addition, we corresponding to t,. ¢)
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Because a SAR image is composed of discrete pix- where " and C^ are the unit range and cross-range
els in the range and cross-range dimensions, the loca- vectors in the radar coordinate system that was de-
tion (im, ni) actually corresponds to a locus of points in fined earlier.
the slant plane. Let A, and A, be the range and cross-
range pixel spacing intervals, respectively, associated escription ofProposed Ciassfier

with the image. Then any slant plane location (q,. q) Figure 13 illustrates the algorithm used by the pro-
such that posed version of the baseline classifier (note the simi-

larity between this figure and Figure 3). The classifier
r.. - q,. < r,, + A, uses the aspect angle (z and the depression angle 0 to

c, s q,. < c, + A, , select a 3-D template from the database. The points
in this 3-D template are projected onto the slant

(where rM; and c., are appropriate constants) is mapped plane specified by the squint angle 0 to produce a 2-)
to SAR image location (m, n). Thus pj projects to the image, which is then correlated with the input test
SAR image location (in. n) if image. If the correlation score exceeds the threshold r,

r.. <Pi "i< rM + A,. the target of interest is declared to be present.
Note that the new classifier continues to use the

c, • pi < c,, + A, , conventional template-matching engine, so that the

overall structure of the algorithm is unchanged. The

Database

E I Reference

1 [••Target

FIGURE 13. Schematic description of the algorithm used by the proposed one-class classifier. The classifier uses the
aspect angle (t and the depression angle ()to select a 3-D template from the database. This 3-D template is projected onto
the slant plane specified by the squint angle q to produce a 2-D image, which is then correlated with the input test image. If
the correlation score p is greater than or equal to the threshold b , the target present decision is declared.

asec agl ( ad hederesin nge t slet 3D emlae rom the database., Tis, 3-D templ,'ate is:projectdont7
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principal modification to the proposed classifier is Let the total mean-square difference between the set
that the original database of 2-I) reference images has of synthetic images and the set of' actual images be
been replaced by a database of 3-D templates. In given by
addition, the proposed classifier is equipped with a
processor that transforms a 3-D template into a 2-D r(A1 ..... At,=
im age .

m, n)1 - , m n
imeage.o of'3-I) 7eimp/ates ~~(nn

Let us now consider how a 3-D) template can be (5)
created from the existing set of 2-D reference images.
For a target of interest, we wish to construct a 3-D where M and Nare the range and cross-range dimen-
template corresponding to a particular aspect-angle sions, respectively, of the SAR images. (Note that the
and depression-angle pair. To perform this construc- dependency of r on each A, enters Equation 5 implic-
tion we require two or more SAR images of the target, itly through Equation 4.)
all formed by using the fixed aspect and depression We can now cast the template construction prob-
angles of the template, but each formed by using a lem as a multivariable minimization problem. Spe-
different squint angle. Recall that each of these SAR cifically, we compute the values of A 1,..., AK,. by
images represents a projection of the 3-D distribution solving
of target scatterers onto a 2-D slant plane. Our goal is
to use the information contained in these projections
to reconstruct the locations and amplitudes of the such that Aj a 0, forj 2=,2.. K.
target scatterers.

We fix the locations of the scatterers Pl,..... PK SO To determine an optimal solution, we begin by as-
that they represent a uniform sampling of a parallel- signing to each unknown amplitude A, an initial am-
epiped that is approximately the size of the target. plitude that represents our best apriori estimate of the
Once these scatterer locations are fixed, we then solve actual radar reflectivity at that point. In the absence
for the unknown amplitudes Aj corresponding to the of a priori knowledge, we assign a random initial
points pi. Mathematically, we formulate the problem value to each A,. Figure 14 illustrates the iterative
of determining the A1 values in the following way. Let procedure we use to compute the template amplitude
us assume we have L actual SAR images 1_... values.
formed at squint angles 0.. 1, respectively. Corre- The points pi are projected onto each of the L slant
sponding to this sequence of actual images, we let planes (each slant plane corresponds to an actual SAR
I,_., 11, be a sequence of synthetic images formed image supplied to the algorithm), which results in a
from the template amplitude values. By using our sequence of synthetic images that can be compared to
projection model for the SAR imaging process, the the actual images. The total squared error is corn-
value in the ith synthetic image corresponding to the puted from these two sets of images (synthetic and
range/cross-range location (m, n) is computed by actual) and the amplitude values are adjusted such

that this total error is reduced. The iteration then
I(m, n) = ' Al ( cycles through the stages of synthetic image forma-

iJCil'(4) tion, error computation, and amplitude adjustment.
The procedure is terminated when the total squared

where Q (m, n) is the set of indices specified by error is less than some prespecified tolerance.
Many standard gradient-descent techniques are

Q n) j p, projects to location (m, n) in the available for implementing this iterative minimiza-
QSmAn - tion; for more details on these techniques see the
SR image corresponding I J book by 1).G. Luenberger [3].

6 8 0H 4% ,'ý01, ý1'*,[/• } i ',`l f,(1 V!•$ [ gJYF'•[•;: ' i.



* VFRBOUI i-IAL.

a I ~i~,'/at lrci Iawi/hr in, a ,5A A it o maiu, 1,o-,ci, Re, ,,'m)uiu S;q,', itnb I ,,,n I) I .irp,' MIomiornir

We 3.-D template of radar-reflectivity amplitude values (A,)

A,

Adjust Ai to
Synthetic imagel1 Synthetic image 2 Synthetic image L reduce error

Real image 1 Real image 2 Real image L

FIGURE 14. Illustration of the 3-D template-creation procedure. The procedure begins with a random assignment of radar-
reflectivity values at points in the 3-D template; thereafter the procedure becomes an iterative refinement process. The
amplitudes are projected onto L slant planes (each slant plane corresponds to an actual SAR image supplied to the
algorithm), which results in a sequence of synthetic imiages that can be compared to the actual images. The total squared
error is computed from these two sets of images (synthetic and actual), and the amplitude values are adjusted such that this
total error is reduced. The iteration theni cycles through the stages of synthetic image formation, error computation, and
amplitude adjustment. The procedure is terminated when thle total squared error is less than some prespecified tolerance.

diingl. Thiis scction stinii maries .1 C01MLIti 01 fl at-lloft
.S(e;.s1'itz7,1;1' ofhI'oposcd (./dssfi/W to (.'I'allge~s in .Sq~tJI1t experimient InI svhic1 We 11ea1SUre the scnsitivItv of rile

Earlier weC described an cxperninent with rtle basehli n proposed classifier ro changes in squint angle.

ch.issitir th~at provided qutantitative proof that the For th is experniment we, used the samec set of' 1 7 test
correlation score ais ignIfiCaiitlv, as a1 fuinciion of imiages described earlier. Recall that these imiages we-re
squint ailglc for a fixed aspect-angle anid depression- fornled by using the SART0)( )i. odel of' the M48X
a ugic pair. Becauise the correclation score is tile classi fi- tan~k- oriented such that bothi the aspect angle and
caItion star "'isc uIsed bNy the basclinc classifier, overall depr-cssion angle we~re fixed at 15' Thcse inhar.cs were

performiance is exti-cemely setisil ive to clailges iii squtint created with squint angles ranging from A40" to 4 10"
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in 5' increments. Let us denote the ith image in this corresponding to an aspect angle of45' and a depres-

set by 1,, with the corresponding squint angle i, given sion angle of 45°. We constructed this 3-1) temp'ate

by the expression by applying the algorithm described in the previous

section to three SARTOGI. images formed at squint

= -40 + 5(1 - 1), i = 1.... ,.17. angles of -40', 00, and 40'. These three images are

displayed in Figures 7(b), 7(c), and 7(d), respectively.

Our 2-D reference image, which was created at a The result of (his 3-1) template cons•truction is

squint angle of 0', was replaced by a 3-D template interesting to observe. Recall that the value stored at

each point in the template is the radar reflectivit' of

the scatterer at that location, when the target is im-

aged from the given viewing direction. Figure 1 5(a)

shows a simple solids model that represents the basic

features and dimensions of the M48 tank; Figure

15(b) shows the same model overlaid with the most

significant radar-reflectivity values contained in the

template. Note that there arc significant radar returns
from the front right fender, as well as from the turret,

the track region, and the front left portion of the

tank.
In our previous experiment we correlated the refer-

ence image with each of the 17 test images to generate

a plot (denoted by the solid line in Figure 12) of

correlation score versus squint angle. In this expert-
(a) ment we first transformed the 3-D template into a

sequence of reference images, which we denote by

.........Ii., corresponding to squint angles .

We then correlated 1, with I,, for 1 17, to

obtain the dashed line in Figure 12.
We observe in this plot that the highest correlation

scores occur at the squint angles -40', 00, and +40'.
This result is not surprising because the template was

constructed by using images formed at these three

squint angles. The average correlation score obtained
by using the 3-D template is approximately 0.85,

which is much higher than the average correlation

score obtained by using the baseline classifier in the
previous experiment. Moreover, the scores do not

change significantly as the squint angle varies in ci-
(b) ther direction from 0', which suggests that the pro-

FIGURE 15. (a) Simple solids model of an M48 tank; (b) the posed classifier is more robust with respect to changes
same model of the tank with an overlay of the most signifi- in squint angle than the baseline classifier.
cant radar-reflectivity information contained in the 3-D tem-
plate for the tank. (The overall intensity of the underlying Summary
solids model has been reduced to give emphasis to the
radar-reflectivity information.) Note that there are signifi-
cant radar returns from the front right fender, the turret, provernents to a conventional tcmplatc-matching clas-

the track region, and the front left portion of the tank. sifier currently used in an operational ATR system.
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This conventional classifier uses a collection of 2-1)
SAR reference images to represent a full range of R EY 1 R E N CE S
radar viewing directions for a prespecified set of tar-
gets. For each target category, the input image is I. J.C. Honr. " hc Limohn i.aLbranorv 33-•( ,ItAirbrnc PlA-rinictric SAR Imaging s,.'s~cn, lk't: Na;tionla ;,,,,,correlated with the reference image that was formed r'nr.. atARa, n6,;A g 2 m-2-Alarl, 1991, p. 353.

from the most similar radar viewing direction; the 2. S. Zabdc. S. Bachinskv', B.. NMyers, A. Sr'hI, and R. Pinto.
input is then classified to the category with the high- .Sisfa,,-, lredictio, ier' Aanni, ,'e',toii -1 (l'ht Analv!¾.

S.ictice (Corporation, Reading, MAI, 1990).
est correlation score. 3. D.G. Lu, nbcrgcr, LIinear and Nonlinear I'rerampning (Adds-

Although this algorithm seems reasonable, we found s,,,-W.csY. Reading, MA, I98,u.

that it produces surprisingly poor classification results

for some target types. We explained these poor results
by using a simple mathematical model of the SAR
imaging process. As our model reveals, radar motion
direction is as important as radar viewing direction in
specifying SAR imaging geometry. Thus two target
images formed with the same radar viewing direction
but different radar motion directions can appear quite

different. Because the conventional classifier does not
explicitly account for radar motion direction, its pcr-

formance is degraded.
Accordingly, we have proposed and demonstrated

an improved version of the conventional template-
based classifier that accounts for both direction pa-
rameters. In our improved classifier, each 2-D image
from the reference library is repiaced by a 3-D tem-
plate so that more target scattering information is
available at each viewing direction. As in the conven-
tional classifier, the reference image is selected on the
basis of radar viewing direction; by using the math-
ematical SAR imaging model the improved classifier
then transfiorms the selected 3-D template to a 2-D
image whose radar motion direction matches that of

the input image.
After comparing the experimental correlation scores

between the original 2-D template-based classifier
and the improved 3-D template-based classifier, we
conclude that the new classifier is significantly more
robust with respect to changes in squint angle.
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APPENDIX:
MODELING SPOTLIGHT SAR IMAGING

AS A PROJECTION

"THROUGHOUT THE TEXT of this article we modeled

the SAR imaging process as a projection of the 3-Drs.(t)1

distribution of target scatterers onto a 2-D slant plane. s(t) = S Y(t)

We relied heavily on this projection model as we s,(t)]

analyzed problems with the baseline classifier and

developed improvements to it. In this appendix we Because the sensor is moving at a fixed altitude paral-

provide justification for using the projection model, lel to the y-axis in Figure 8, we explicitly remove the

and we state the conditions under which this model is time dependency from the first and third coordinates

valid. ofs(t) by setting s,(t) -- s,, and s,(t) -= s5.

Our strategy for justifying the projection model With the sensor and point-reflector positions de-

consists of four main steps. In the first step, we con- fined, we can now construct the basis vectors for the

struct the basis vectors for the radar coordinate sys- radar coordinate system. Recall from the mair, text

tem and perform the projection operation on a point that we originally expressed the basis vectors r, c, and

reflector to obtain approximate expressions for the Ii in terms of the imaging angles a and 0. In this

SAR image location of the reflector. In the second section, we reconstruct the same basis vectors r, c,

step, we build a foundation for analyzing the projec- and ýi, but we express them in a form that is more

tion approximations by writing the exact nonlinear convenient and more useful for our derivations. In

expressions for the physical quantities that are mea- particular, rather than using fixed angles from a single

sured by a SAR when imaging the point reflector. In imaging geometry, we express these vectors in a time-

the third step, we expand these nonlinear expressions dependent form in terms of the sensor coordinates.

into first-order Taylor series in the vicinity of the At time t, the range vector i(t) can be constructed

radar aimpoint, and then observe that the resulting by using the formula

linear approximations are identical to the original

projection approximations. Finally, in the fourth step, SW~
we quantify the accuracy of the projection model by r(t) .. . .___ _ s(t).

deriving simple bounds on the approximation error. Iis(X)I + sY(t) + ,,
We begin by obtaining expressions for the pro-

jected location of a point reflector in the radar slant Also, as before, the slant-plane normal vector ýi(t)

plane. In keeping with the notation we established for can be constructed by using the formula

Figure 8, we define the position of the point reflector

in world coordinates as i(t)x S

1 ik(t) X ýJ\SA 2 s

p= py I
P -- (Note that this normal vector is constant, because the

radar slant plane does not change with time.) Finally,

In addition, we define the time-dependent sensor the cross-range vector ý(t) is determined by the cross

position in world coordinates as product of the other two vectors, as given by
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Z) = Wit X i(t) In addition, by differentiating the above expression
with respect to time, we can write the relative range

(t) rate iks(t), p] of the point reflector as

-- - - - - - S. + S,
s, .' + S S,+ W s y(t)s i[s(t),p] = -- r[s(t), p1Y W" " ett

The projection of the point p onto each of these basis =V W p1  s1,(t

vectors yields the new vector L1sw - P1 1swtll

q,(t In reality, the relative range rate is rarely used in its

q(t) = q,(t) raw form as it appears above, because it is so highly

q,(W depend-.nt on both khe speed of the sensor and the
distance of the sensor from the aimpoint. Rather,

in radar coordinates. In particular, the range and cross- these undesirable dependencies on the absolute sen-
range coordinates of the point p are given by sor velocity and position are usually removed through

preprocessing, so that the cross-range dimension of
q,(t) = p" -(t) the resulting SAR images is normalized, and SAR

-1 + + images created under Uifferent imaging conditions
S2 + [ P P2SzJ can be directly compared. Thus we introduce two

X + Z simple time-dependent corrections to i4s(t),p] (one
correction for the absolute sensor velocity, and the

and other correction for the absolute sensor position) to
obtain the compensated relative range rate, which we

q,.(t) = p -(t) denote by '>,[s(t),p].

I To compute the correction for sensor motion, we
begin by decomposing the sensor velocity vector into

sX + s• 's + Syt) + sz two velocity components in the slant plane, with oner 2 2 ] 1 component along the radar line of sight, and the
X -pxsxsy(t) + py (s + sz) - Pz~y t)s. other component orthogonal to the radar line ofsigh'.

We then note (under the assumption that the sensor
Having obtained these projection approximations is far from the aimpoint) that the relative range rate is

for the range and cross-range coordinates of the point affected only by the component of the sensor velocity
p, we now seek expressions for the actual quantities vector that is orthogonal to the radar line of sight.
measured by a SAR with respect to the location of p. (This statement is true because the velocity compo-
Specifically, these quantities are (1) the relative range nent along the radar line of sight, considered sepa-
of the point reflector (i.e., the difference between the rately, induces exactly the same range rate on all points
distance from the sensor to the point reflector and the in the imaging area, resulting in a relative range rate
distance from the sensor to the aimpoint), and (2) a of zero for these points.) The sensor speed in the
scaled version of the relative range rate of the point direction orthogonal to the radar line of sight can be
reflector (i.e., the rate of change of the relative range expressed as
with respect to time). We can express the relative
range of the point reflector as ( ( s2 2s

Si- ~ (t) +S

r rs rt),p l = ls rt) - p~l - 11s( tO ll ," YI sw ii y
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Because the sensor speed appears in the numerator of which reduces to
the expression for relative range rate, the above com-
pcnsation ftr sensor speed will appear in the denomi- q, (W0 O+ W[ps +/,s,(i) + p_, 1
nator of the overall range-rate correction term. I S ) + S(t) +Ss

"lo obtain the correction for sensor position, we
note that the denominator of'cach term in the expres- = p r(t).

sion for relative range rate is on the order of Is(t)il.
Thus a suitable compensation for the distance of the For the cross-range component, the Taylor series cx-
sensor from the a:impoint is simply this factor IIs(ti) , pansion yields
which will appear in the numerator of the overall

range-rate correction term. By applying both of the ,t+ , I s(t, pI

computed corrections to the oiiginal expression for - = is(t), p= 0 +,

relative range rate, we can express the compensated "
relative range rate as ,'r. s(t), p] Ir [s(I ), pI,+-- + P.ý

I Is(t), p=I which ps(t),p=O
SY W (t) which reduces to

-IwS(t)wI- [s"(t) - P S y(t)) [ F s(t) s-t) q, (t) 0 +
\s_ + s ._ 11 I t ."1 2 2\5+.Hs S \0 + S+ IWt) +

Having produced explicit expressions for relative x[ (t)+ (3+ A -)- Ps1s(

range and compensated relative range rate, we rewrite

them more suggestively as range and cross-range mica- = p c(t).

surements by using the notation
Note that these linear laylor series expansions are

Ir(t) = rts(t),p] identical to the original projections q,.(t) and q, (.
and indicating that q,(t) and q, ( arc good approxinma-

q, (t) = i ls(t),p]. tions to ir() and qW(t in the vicinity of the radar
aimpoint.

We now show that these actual radar measurements

qr(t) and qt(t) are well approximated by the previ- Error Analysis

ously computed projections qr (t) and q, (t), respec- Let us now quantify the error incurred by using these

tively. We begin by separately expanding the expres- linear approximations instead of the actual mcas.irc-
sions for q-,(t) and q(t) into Taylor series around ments. lb keep the analysis concise, we examine only

the radar aimpoint (i.e., around p = 0), retaining only the error in the relative range approximation. "lO sire-
the first-order terms. For the range component, this plify notation, we arbitrarily choose a time 10 and
procedure yields remove the explicit time dependency of variables by

setting s =- s(t,,), q a -, (to), and q, - q,(t,1 ). In

dris(t), p I addition, for convenience we express the length of p
q,(t) - r[s(t),pllP=O + P, OP, as a fraction 6of the length ofs (i.e., Ipl- = sel~l, and

we define t to be the angle between p and s.

Orjs(t), pI + rls(t), p) * With these definitions, we can rewrite the cxprcs-
,rs(Ty + "P , sion for the true relative range measurement q, by

P Iusing the law of cosines to yield

7 4 • { 'i l , 'H /; I;, : , ,, i : ,f t ,,, ¢ r - q .
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q, - lsll- + 11pJ1- - 211sl Ilpl cos/3 - •IS11

- I IsI12 + ) lSl2 - _ - 2,6lslr cos _ Ilsl

--I1s11 I + 2 - 2_ cos/ - 1 )

Also, we can rewrite the expression for the relative
range approximation qr by using the identity

P. -- 1PIplsllcos 0

to yield

q 1Il slcos (3-' -- Il l

-- -6IIsjcosf3.

Because q, always underestimates qh, we can write
the absolute approximation error e simply as

e = -r q

= Is (I+ b 2 - 26 cos 13 - 1 + 6 cos .3)

For a fixed value of b, the error reaches its maxi-
mum value at the angle p3 = cos- (6/2). Substitut-
ing this angle back into the formula for e yields the
upper bound

mx 2 2

For the specific case of data collection with the Lin-
coln Laboratory millimeter-wave sensor, b is typically
no larger than 0.05, so the error incurred by using the
projection approximation for a given point p is no
more than 2.5% of the distance of p from the
aimpoint.

The derivation of the error bound for the cross-
range approximation is similar in spirit to the deriva-
tion given above, but it is much more lengthy and
tedious, and hence is omitted.
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Neural Systems for Automatic
Target Learning and Recognition
Allen M. Waxman, Michael Seibert, Ann Marie Bernardon, and David A. Fay

U We have designed and implemented several computational neural systems for

the automatic learning and recognition of targets in both passive visible and
synthetic-aperture radar (SAR) imagery. Motivated by biological vision systems
(in particular, that of the macaque monkey), our computational neural systems

employ a variety of neural networks. Boundary Contour System (BCS) and
Feature Contour System (FCS) networks are used for image conditioning.
Shunting center-surround networks, Diffusion-Enhancement Bilayer (DEB)
networks, log-polar transforms, and overlapping receptive fields are responsible
for feature extraction and coding. Adaptive Resonance Theory (ART-2)
networks perform aspect categorization and template learning of the targets.
And Aspect networks are used to accumulate evidence/confidence over temporal
sequences of imagery.

In this article we present an overview of our research for the past several
years, highlighting our earlier work on the unsupervised learning of three-
dimensional (3-D) objects as applied to aircraft recognition in the passive visible

domain, the recent modification of this system with application to the learning
and recognition of tactical targets from SAR imagery, the further application of
this system to reentry-vehicle recognition from inverse SAR, or ISAR, imagery,
and the incorporation of this recognition system on a mobile robot called the
Mobile Adaptive Visual Navigator (MAVIN) at Lincoln Laboratory.

F ROM' TIlE STUDY of biological vision systems,

we can learn much that applies to the design Design Constraints from Biological Vision
of computational neural systcnms for target rcc- The vision sys;tems of primates contain two primary

ognition. These insights arc most relevant to passive processing streams: the pari'oceI//uar stream, which
vision systems, such as visible and multispcctral infra- processes shape information, and the magnocell/uar
red imaging systems, but similar organizing principles streamn, which processes motion information (see Ref-

arc also useful in the radar imaging domain. In the crences I and 2, and the references cited therein).
next section, we summarize the primary lessons that Both streams begin in the retina and culminate in the
have been learned from the anatomical, physiological, parietal and temporal lobes of the cerebral cortex.
and psychophysical study of vision systems in the Our automnatic target recognition (XAR) systems have
macaque monkey and man. These insights arc then focused on the modeling of the parvoccllular stream
applied throughout the remaining sections of this for the learning and recognition of three-dimensional
review. (Note: An introduction to biological vision, (3-D)) objects, although we have utilized image se-
learning, and memory can be found in the September quences to accumulate evidence over time. 'he image
1992 special isstie of Scienti/wc American, which is motion of objects can also be usefu1l fr rccogniz-
entitled "Mind and Brain.") ing potential targets, and we have developed

,• .': ' '.!•, : .. . . , ' :. . - .: 7 7
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neurocornputational systems 131 to extract such infor- 3-1) object representation can be gained by studying
mation in real time (30 velocity fields per second) on the superior temporal sulcuS (STS) in the temporal
the Pipelined Image Processing Engine (PIPE), a video- lobe of the macaque monkey. This area is known to

rate parallel-processing computer. The integration of be the site of cells tuned for the recognition of tace-,
an object's image motion with its shape information and other body parts. Of course, the taces that a
can potentially enhance the A'IR process, and is a monkey recognizes are indicative of the monkeyN's
topic we are currently investigating, visual experiences, and reflect the visual learning pro-

The early visual processing that takes place in the ccss itself' We have learned much from the work of
retina, lateral geniculatc nucleus, geniculo-cortical con- D.I. Perrett and his colleagues at the University of
ncctions, and visual cortical areas VI, V2, and V4 of St. Andrews in Scotland 15-81.
the occipital lobe are responsible for The notion of cells specifically tuned to the rccog-
I. conditioning imagery so as to render it invari- nition of certain objects (analogous to the orienta-

ant to the prevailing illumination (while pro- tionally tuned edge sensitive neurons in V'I discovered
ducing smoothly shaded percepts of objects), by D. Hubel and T Wiesel in 1959) was popularized

2. localizing features (such as edges, high-curva- by H. Barlow in 1972, and became known as the

ture points, and high-contrast points) that de- V'andmother-cell hypothesis, as if to emphasize that a
scribe 2-) shapes, and single neuron becomes active to signal the recogni-

3. transforming the resulting feature pattern so as tion of one's grandmother. And, for the past 20 years,
to render it invariant to object location, scale, a debate has raged over this notion of single-cell ver-

orientation around the line of sight, and small sus distributed-network coding of visual objects. In
deformation due to any foreshortening resulting fact, this seemingly absurd notion of single-cell cod-
from a rotation in depth (i.e., a rotation around ing seems to have much supporting evidence, as illus-
an axis perpendicular to the line of sight), while trated in Perrett's work below (and confirmed by
still retaining measurements of these spatial at- other investigators). The strict notion of grandmother
tributes, cells, however, must be reinterpreted in light of the

These invariant representations of 2-D object shapes fact that many layers of processing precede the viewvr

make their way to the inferior temporal cortex via specific coding of objects, and a hierarchical pooling
connections between the occipital and temporal lobes, of cells is required to influence the objet t-spCcific cell.
whereas the location/scale/orientation information is Moreover, many visual objects may activate this cell.
relayed to the posterior part of the parietal lobe via although it is maximally active for a specific ol

connections between the occipital and parietal lobes. ject, whereas other cells are more active in the case
Object-location information is conveyed to the parn- of the other objects. Hence, a recognition decision
etal lobe also via the superior colliculus, which re- must follow a neural competition between grand-
ceives direct connections from the geniculate nucleus mother cells, and possibly an evidence-accurmulation
and is intimately involved in attentional processes. phase among multiple views when such views are
These two cortical pathways-one subserving object available.
vision (in the temporal lobe) and the other subserv- Figure 1 (from Reference 5) illustrates the STS area
ing spatial vision (in the parietal lobe)-have come to in the macaque monkey brain. The figure shows the

be known as the what and where systems [4]. Fusion locations of neurons detected by Perrctt that are highly
of the what and where information is achieved via tuned to the face and profile views of heads, rotations
reciprocal connections between the temporal and pa- of heads between specific views, and conjunctions of
rietal lobes, as well as by indirect connections be- face views with up/down/left/right motions. Perrett's
tween other regions of the brain such as the hip- subsequent work [7] indicates the existence of view-

pocampus, although the details are not yet specific cells, each one tuned for a particular view
understood. around a certain class of heads, and still other cells,

Insight into the later stages of visual processing and called view-general cells, that respond to any view of a
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FIGURE 1. View-based coding of faces in the temporal cortex of the macaque monkey: (a)
lateral view of the monkey brain, (b) coronal cross section with a red box around the
superior temporal sulcus (STS), and (c) serial sections of the STS area investigated. From
left to right, the sections illustrate the electrode tracks, cells selective to face views, cells
selective to profile views, cells selective to transitions between views during head rotations,
cells selective to faces moving left/right, and cells selective to faces moving up/down.
(Adapted from D.I. Perrett et al. [51, with permission from Trends in Neurosciences. Elsevier
Science Publishers B.V.)

specific head (as if the view-gcnceral cells wcrc con- vicw. Such cells have apparently learned 2-l)-invari-

nected to all of the corresponding vicw-specific cells). ant shape codes.
View-specific cells respond to the same face views F'igurc 2 (from Retcrencc 6) provides a striking
with similar activity levels, regardless of the ill u mi na- cxamiplC Of view and idcn itv coding in the nacaque

tron strength or color, the size or 2-1) orientation of temiporal cortex. In the experiment, a monkcyv wvas
the Lice, and the position of the face in the field of shown different views of the faces of rwo familiar
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Figure 3 provides a conceptual overview of the tf:aturc-pattcrn template is established for each cat-
system, in which a temporal view sequence of an cgory. The aspect categories correspond to the nodes
objcct leads to the learning of an aspect graph 1121 of an aspect-graph representation of the target; the\'
representation of that 3-1) object. We can divide the also play the role of vicw-specific cells for aircratt. The
system into three main functional stages, the first of' third stage detects the transitions over time between
which performs 2-1) view processing to extract tea- aspect categories (while the target is tracked in relauive
tures (invariant to illutim i nation) from the individual motion), learns these transitions, and accumulatcs
iniag1es, group these fe aturcs to locate objcct position, evidence tor possible targets. The learned transitUkns
and transform the features to render the pattern in- are like the arcs that connect the nodes in the aspect-
variant to scale, orientation, and small deformation. graph concept, and arc reminiscent of the ST+S nCu-
Tl'he second stage takes these invariant feature pat- rons that arc activated by the rotation of the heads

terns and Clusters them into categories of similar views, between views in Figure 1T. he ability to accutnu-
or aspects. This 2-1) view classification is done in an late evidence over time is significant, for there are
unsupervised way; i.e., it is strictly data driven with- often cases in which a single view of a target is not
out any category definition by a human. Along with sufficient to identify the target unambiguously; more-
the learning of these aspect categories, a prototype over, this fusion of evidence leads to a notion of

Top
•" •g rLeft side Fot Rgtsd

Temporal view sequence

(a) Aspect graph

2-D view 2-D view 3-D object
processing classification hypotheses

-Feature *Pattern -Transition
extraction encoding detection

View *Position, M -Aspect -Transition Object
sequence scale, learning learning recognition

orientation, and and
deformation recognition -Evidence
invariance accumulation

(b)

FIGURE 3. Conceptual approach of ATR neural system for passive visible image sequences: (a) temporal view sequence of
images and corresponding aspect graph, and (b) functional block diagram of system. As a target moves relative to an
observer, qualitatively different views are exposed in a temporal view sequence. The views unfold in an orderly fashion that
is represented in the aspect graph. Each image in the sequence is processed by three stages of networks performing
feature extraction and invariant mappings. classification of feature maps into aspect categories, and 3-D object evidence
accumulation from the recognition of categories and transitions. The learned categories and transitions are analogous to
the nodes and arcs, respectively, of an associated aspect graph.
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conlfidence InI the recognition decision,. the original %vIcN of' the F-1 IX nvariant to Ilmia
These three processing stages canl each be realized tiOnl, position, scale, and orientatiOnl.

With muILltiple neural networks, and together the nect- The next laver of processing Indicated ]in Figure -

works comprise a neural system architecture, as shown conlsists of £flerla/qli~dg recep~tive ie/di: the processing Is
InI Figure 4. [lere, each moduleI is anl Individual net- aligned with the ccentroid that was de~tected onl the
work that is annotated by the mioduleIs funlctional1 log-polar itiap, and serves to r'" the ftcaiire pat-
role Inl the systeml.Twko processing streamis arc shown: tern somewhat inisensitive to nonlinear Spatial def'or-
the gray modules form aI parvoce//zelar stream, and the matron. fIn the processing (Figure 7), a small array of
red modules form anl attentwual estream. Gaulssaian-weightedc overlapping receptors arc excited

Inl the sy'stem, images are captured with a conven- by' the Underlying f'eaturcs inl the log-polar map, and
tion11l CCDI camera (Which cou~ld be replaced by anl the ou~tpu~t of the array provides a muLch1 compressed
Infrared Imaging system) and objects art: segmented code of the spatial feature pattern. (An indilvidual
from the background by using a combination of inn- receptor is activated by the feature wvithin the receptor's
tiOnl and contrast Information. Next, a shunting Ceni- field that lies closest to the field's center, and the
ter-surrouna' netwoirk, enhances the edges of the seg- featuire's distance is coded according to a (;aIuSSI.an
lmented object, and a L~dsnInacmetHi/aver falloff') This compressed code Is illustrated for the

(DER) extracts and dY'na micall'v gi OtIPS the Ceattire F- 18 i n Figuire 6(d) for the case of a 5 x 5 at i av of
points of high edge curvatuire Into a positionl cell- Overlapping receptors. Inl the f'igure, the sizes of the
troid, as shown inl Figtire 5. These networks form dots correspond to the receptor activation level: the
nonlinear dynamical systems inl which indiv'idual nodes larger the dot, the greater the activation. T[his coarse
are gove rned by (Hodgkin- Huxley-like) cell-niem- coding of spatial feCature patterns simu~tltanoulyCLS pro-
brane equations that resemnble the charginig dYnamiics vides f~or enormou~s data reduIction f'rom the original
of' coupled resistor-capacitor networks. (See Refer- target Image (compared, f~or example, with a direct

ec:13 bv S. Grossberg for a review of his pioneering temiplate-miatching approach), leads to atolerance for
work onl dynamical neurIIal networks, includingt shunt- smlall deformations duetoroaton in detIn

ini(, center-stirrotmnd networks. Also, see Rf'reniccs Inaccurate feature extraction, and vields anl inlput VCe-
14 and 159 for a ref-ormulation of the D F.B inl terms of' tor for the classification net-work that forms the next
coupled dyniamilcal layers of ast rocytc glial-like diffu1.- system module.1
Siorn cells ol ~d necural-I ike contrast-enhlancing eellIs,all I T he later stages of vision support the learn inrg anld
Inspi red by 'iologs' arid applied to thle psvcli( physical recogniit ion process. ]In our svsitin, learn ing and rec-
percept of ln-rneaprnmoi.)ognition are realized by two modleCLIs C01nSPitingt' of a

'I he centrmid dteriiiined byv the DE)B network is IldaPtive Resonance Theory' network (cf. sevcr ai papers,

Used to trac.k and1( fixatc' the object, and ser, Cs as the (,. various ARIT netwvorks inl Reftcrrence 17~) arid anl

Orig.inl of a1 lug-polar trnfm of th cxt Idctco.-Icx- Ae IIU(('UIA I 10 1
turý' map. 'I hiis tra nsforma tio n is very' c oselv approxi- F~igtirc 8 Illuist rates the API -2 architecture for tinl-
ftinted bY the axorIal cI COICtticerios between'I thli lateral supriseI-Id c atego ry learning and recoginit ion. (Note:

"geric iflirea nutclus arid the primary visual cortex VI AR'I-2 Is one iriiplcnmeritation of'AdaptIVC ResoitItIIce
11011. In1 ouir sysitem thle transformation1 serve:s to coil- Theory for patterns cotisistitig, of real ritribers.) 1
ert c hinges in1 2-1) scale arid] 2-1) oriental ion of the( AR'I-2 network takes anl ATdimniisional Input vc~tor

"vislial-feattire map into a tranrslartioin along newv orI- (ill our caseC, the ove~rlappling receptive field p.ttten
thi 0m(1n1,i1 axes. I lieCSe pr9L sIc siIug steps are ill tistrated withI dimnension of' order 10 it) 1 001) arid ftirst pro-
fo~r anl I'-18 silhiouette itt 0iue (a), (hi), arnd (ci. tcesses it through circuitry tha~t ýoiitrjist-etihi~m.itle and

HI ieR1 1 g pl1,f11r)ma (peiCAOdodIll Kiii rietationl rorrthiciis thc Input 'Is .1 Sliort-irirr ruernors (1)l1iM
iPgl thU1 ( s liriirlT to .i set.Onid I )Fl. to de~terminec patterni. '\Rl-2 then paisses thil, p~at'mi through .

a1 ries fea11tV 4ir01110i rod Inlrle rII r11Irisfor md coordi- buttmruintp filter ii it teriipl~la)tciSn)rcd ill loing term
nn.1tes". [Ie1 spatial1 pJIMI'Il o)f fearures now\ represe.nts niiieiiorv HI II M) to _-\oji(.e . field of !slI Mr'gr
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FIGURE 4. Modular system architecture for the learning and recognition of 3-D targets from visible imagery. The system is
organized into two streams of neural network modules: the gray parvocellular stream for invariant shape learning and
recognition, and the red attentlonal stream. The functional role of each module is indicated along with the type of
network.
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In1put image

Edge enhancement Diffusion Local maximum
detection

Edge-enhanced image
(a) with maxima superimposed

n=3 (iterations) n= 50 n = 125

(b)

FIGURE 5. Diffusioni-EFnha ucoemnt Bilayer ( DEB) for feature extractionl and groupIngM (a) archritectu re diagrami andi (h)

evotVing m1ap of liirj- b-urvattiro. points. Thre first stages of processing are accomplished by center-surround networks to

eýdge-enbawce the segmented object, and a dfsonnbceetnetwork to isolate per its Of Iiýj gbCiirvatu re along the

,ilhoujette. Ibese feature points5 are dynanircally grouped Into a controid (providing a focus of attention) by anotber DEB,

wbichr ( oiples; a rhiftuion01 layer to a contrast-enhraicirig layer ini a teedforward and feedback curfitiuiation. (For a detailed

(1051 ription of DEB,,. wee RefereirPe, 9, 14, arnd 15.)
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(a) (b) (c) (d)

FIGURE 6. Stages in the processing of a 2-D view of a model F-18 aircraft: (a) the original image, (b) the edge-enhanced

silhouette with DEB features superimposed and the centroid indicated with a "+," (c) log-polar mapping of the image in

part b, with the new centroid indicated with a "+," and (d) the resulting output of a 5 x 5 array of overlapping receptive fields
(see Figure 7) that forms the pattern fed to the Adaptive Resonance Theory (ART-2) network. In the image in part d, larger

dots represent greater activity in the corresponding receptive fields.

nodes (our view-specific cells, or aspect nodes). These Output of
category nodes compete among themselves to choose 3 x 3 array below
a maximally activated winner, which in turn activates
top-down feedback of a learned template also stored
in I.TM. This feedback represents the network's ex-
pectation of a specific input pattern. A vigilance pa-
rameter p (in the interval 0 to I ) that is set in advance

by the user mediates the matching of the enhanced
input pattern with the top-down template. Thus,
simply having a best match anmong already established

categories is not enough; rather, the best match must
satisR, the established vigilance. When the nmatch does
satis tiithe vigilance criterion, the network goes into a
state of resonant oscillations between layers, and the
bottom-up and top-down filters adapt slightly for
L- ter representation of the recent input pattern. When 3 x 3 array of
the vigilance criterion has not bcc, net, the network overlapping

generates a reset signal that flips the category field, receptive

thus suppressing the recent winner and reactivating fields

the foirmer losers. In this way, an uncommitted cat-
egory node can establish a new category and a new Point features

template can be learned. ART-2 has several important FIGURE 7. Spatial coding of features by overlapping re-
attributcs that make it particularly well suited to ATR ceptive fields. Each circular field is activated according to
applications: it supports on-line, real-time, tnsuper- a Gaussian-weighted distance to the point feature that is
vised, stable category learning and refinement. We closest to the receptor center. (Note: Lighter colors in the
have utilizcd ART-2 successfully in a number of figure represent closer distances.) These receptors pro-

vide enormous data compression, and they code spatial
TOpreienton. rslrelations of features robustly with respect to deformations

due to foreshortening. The fields convert a binary feature

of dif'fcreit aircraft, we introduce the concept of a map to an analog pattern that is then suited for ART-2

v'iu*014,g sphere, as ilhlstrated in Figure 9. Note that a classification.
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bc atII Oiln tnil R iewI ng sphere- fo)r anI cxamiplc am.rafr
Gai cntolcoirrespondis to thi' vie'w of' fIat aircraft as sccn) 11r0m

+ Category field thAt partCiclar direct ion. Using t his, vicwiiig-sphicrc

STIVI ~Concept, Figure 110 Su mn1"Iariics t he results of' tcat nrC

000 0ext raction,. coding, and ARTI- 2 ci Issi fic t ion for anl F-
I8 imiidcl aircratft. With 535~ input view s of flhc F- 18

+Reset and a vigilance j) of'0.93. Akl'-2 generate,, 12 catcigO-

rics of the aircraft. In Figure 10(a), thc categories, or
LTVI+aspects, arc shown color Coded onl an aspet s/cr

with 12 different tinrclatcd colors (ic ., I dark bluc

+ -11.SIIhas no relation to a light h~inc). Note that thc aspects

+ ~subtcnld f'inire solid angles onl thce sphicrc (tile caroc is
Gain control Input field oricoited with Its nose to tile left). B~c~atcsc of objcc

silhouette symmeitry, onlY on qiuadrant ofi c h sphere
+ + is shown. We canl VISaliI'C cxam~plC SIlhloImctcCS that

correspond to thc 12 categories I),sclecti ng locatliOns
Input pattern onl thc aspcct sphere halling at tilc centers of cach of'

(a) tile cstablishicd categories, as shown in Figucre 10(b).
The correspondi ng siIlhOuetccs (nLinlbcrcd 1 through

Reset 1 2 Inl Figure I 1 ld) represent prototype views chat the
Categor fieldsystemi has crcated in an unsuipcr-vised mianncr. No-

ticc the variety of'silhouicttcs selccted: some pootp
A i views capture thc wing shapes, sonie capture thle double

tail fins, sonic capture thc dual CXhlauscs, While 0o1ChrS
emnphasiizc traditional top and sidc views. Also note

LTIVI thc simillarity betwccn SIlhouet ~tcs 2 and 5, given thc
proxinmiy of their corresponding ccntroids in Figure
10(b). Yet, although siin i lar, slilhoutictes 2 and 5 do
exhibit subtle differencos, e.g., the differing slopes of'
the top portion of the visible tail fin. All of theviw
In Figure I10(c) were selected auitomlatically. When the
vigilance I? was lincreased fromi 0.93 to 0.95, the
A RI 2 network generated 24 categories.

InI addition to the F- 18, we have also Investigated

FIGURE 8. ART-2 network: (a) arclitedlure and (b) circuit
model. ART-2 takes analog input patterns and clusters
them into categories by using unsupervised competitive

STIVIlearning. ART-2 can be trained on a dataset, then used to
reconnize data patterns in the field while continuing to
refine its learned category representations (i.e., templates)

Input field stored in its adaptive synapses. The vigilance parameter p)
mediates the matching of the enhanced input pattern stored
in short-term memory (STMV) with a learned template from

Input pattern long-term memory ([TM). (Adapted from G.A. Carpenter

(b) et al. 1 171, with permission. This reference also contains a
detailed description of ART.)
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FIGURE 9. Examiple io.0..irq sphere for a flighter aircraift. Note that I location onl the sphnnw ofr r-,ptmdýl to thto,. fI~ ,In
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FIGURE 10. Results of feature extraction, coding, and ART-2 classification of an F-18 model aircraft alone at a
vigilance p of 0.93: (a) aspect sphere showing the 12 aspects (color coded) generated by ART-2, (b) centroids of
the largest regions of the 12 aspects, or categories, and (c) corresponding example silhouettes of the regions in
part b. These views have been selected automatically by the system. (Note: The 12 colors used for the aspect
sphere have been selected arbitrarily; i.e., a dark blue has no relation to a light blue.)

tially in the field after the aspect categorization has work. larget trajectories are realized as a set of aspect

stabilized (i.e., after repeated exposures to the training categories linked together by aspect transitions. Much

data yield the same categorization). Then, during the more infOrmation becomes available when wc con-
imaging of a target in motion, multiple viewpoints sider the aspect transitions among ambiguous views.

are experienced, leading to recognition of multiple For example, even if both views of a two-aspect

aspects by the AIV-2 network, followed by evidence quencc are each ambiguous among potential targets.

accu1mulation by the object nodes in the Aspect net- the additional aspcct-transitiol inftrmation is of'ten
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sufficient for the preferential activation of the correct synaptic weights lie in the interval [0,1 ], and, as cat-
target node in the Aspect network. egorv transitions are experienced, the weights asymp-

Figure 12 illustrates an Aspect network for a single toticall'v approach the extreme values of 0 (implying
object, along with an enlarged view of the networL's no allowed transition between corresponding catcgo-
azd/aptiveaxo-a.vo-dendriticisympse. This synapse brings ries) and 1 (indicating a permitted transition). These
together in close physical proximity projections from values correspond to the absence or presence of an arc
pairs of aspect nodes onto a branch of the dendritic in the associated aspect-graph representation. The den-
tree leading to an object node. When ART-2 catego- dritic tree with its synaptic connections resembles the
ties are excited in temporal succession, the aspect symmetric state-transition matrices that are commonly
nodes shown charge or discharge exponentially like used in s'_stem -modeling techniques.
capacitors, and their temporal overlap of activity sup- Extending the Aspect-network concept to multiple
ports a Hebbian form of correlational learning on the targets leads to the network architecture shown in
connecting synapse (cf. Reference 13 for a discussion Figure 13. In this design we consider all aspect cat-
of modified Hebbian learning with gated decay). The egories of all targets as belonging to the same ART-2

-d

. 14

(a) (b) (c)

FIGURE 11. Aspect spheres for the (a) F-18, (b) F-16, and (c) HK-1 (Spruce Goose) have been generated from 535, 530, and
423 views, respectively, of each aircraft. Feature extraction, invariant mappings, and ART-2 categorization of all 1488 views
generate a total of 41 aspects, or categories, at a vigilance p of 0.93. The number of categories generated for the individual
aircraft is 26 for the F-18, 24 for the F-16, and 28 for the HK-1. Note that many categories are common to more than one target;
i.e., the light yellow in part a corresponds to the same category that is represented by the same light yellow in part b. Also
note the resemblance of the aspect spheres for the two fighter aircraft, in contrast to the HK-1 aspect sphere.
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Aspect node activity

Object node XI +

To objectI node Y,>=t >a •'aL eat, "'•L • ynaptinoeY

A, Adaptive weights wSynapti

'tkA\ W", 1

X1 2 X3 X4  X- X 8 X- Aspect nodes Aspect node activity
X,+

(a) (b)

FIGURE 12. Aspect network for the single-object case: (a) network and (b) enlarged view of one synapse of the network. Thle

aspect nodes (blue) are each coupled to corresponding categories allocated by the ART-2 network: the nodes charge and

decay like capacitors. Axons (wires) emanating from each aspect node cross each other to form a transition matrix, and
each crossing has an associated axo-axo-dendr~tic synapse (red) onto the dendritic tree (orange) of the object node. When

two aspect nodes are simultaneously active (during view transitions), they strengthen the synapse (red) via modified

Hebbian learning, and conduct activity onto the dendrite toward the object node. Object nodes thus pool activity from

aspect nodes, exploiting transition information to amplify this activity, thereby accumi:lating evidence over time. in the
enlarged view, the synapse brings together activity from aspect nodes X, anid X, (as well as a background-noise level ) and

channels it onto the dendritic tree. (Note: The box "Aspect Network Learning Dynamics" contains a description of the

equations that govern the aspect nodes, object nodes, and synaptic weights. For further details of Hebbian learning and

Aspect networks, see References 10, 11, and 13.)

network. The aspect ca|tcgorics of'thc ARTI-2 network deice accintlilatlonl and decay for c,| h possibL t[.-

drive a singlc set oftaspcct nodes that tni out to all the get, and the win1in,,1,11 ojcit with the instantanci

NVnaptic arrays of' possible targets. Activity (i.e., cvi- MaxIMUm cu\eidencc. Note tha•i initiMal1V the N'SICm

dclecc) is td'Il C]tiannelcd inito the oi)bject nodes, wvh cich begins selecting the "otlchr" targct iltil ,utticn cvi-

co()Ipctc to select the target withi the maxi11um cvi- deice acc n itlllateS to dcclarc te F:-106 e Win elr,
dcncc at that moment. The wvinning object is then and it reainiiNs so. Reterence 1 I contain,, tortihcr dc-

alc to modify its own transition array. Sudden sac- tails of'thiis cxpcrimcnt.
cad ic cx'c/caimirai motions to other locations in a scene At this point wc have the basic design )1i a neural

initiate a reset of object-node activities to zero; smooth A'I'R sxsterm. Tlie s\'stcni haLs a 1i tiilt-cr Of' dlcf'l ite

tracking motiots do tinot causc such resetting. strengths, but it also suffk'rs froni a fcxv shiortconlings.
l:igurc 14 contains ani example of aircraft rccognti- For example, a diffictyts exists in adding ncxv tarrgcts

tlio by the Aspect network. In the trainiig seCqluCnCC, once the system has stabilized, because nex, data max

each of the three model aircraft cxp~criciccs aIi Idcnti- modifx' the existing ARTI-2 category templatcs and
cal trajectory of 20(l() views covering one quadrant of lead to the need to retrain thie Aspect netw'olrk. A

the viewing sphere. 'hlien a test sequence of 50 [- 16 more efficicnt desigi is to assign a separatc A,'R-2
imagcs is gencratwd, and evidence is acctumulated for nctwork and (nmuch compressed) Aspect netxxork to

each of the three targets as well as for aii unlearned each potent'ial target, but allow the tinsupcrxvisCd as-

other target represcnting a tionc-of-thc-abovc category. signuciit of aspect categories durinIIg the cointrolled

" 'he gralphs showtn in the figure illustrate the corre- exposure in at lrai ning Scssioti. B\" doing Sio, wc Cia 1

sponding category (and transition) scequencc, the cvi- add new targets at a later time by, simply adding iiew

9 0 " . " ' • • ,'; ; ;"., . .:' ' ,• : '
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ASPECT NETWORK LEARNING DYNAMICS

WE DEVEPED the Aspect network state (with rate constant XA.). pect nodes, as long as the object
(Figures 12 and 13) as a means to Object nodes accumulate evi- node activity is changing (i.e.,
fuse recognition events over time. dence for each object by sum- Yk x 0) for the winning object
The network embodies a hierar- ming the activity (with rate con- Zk. The function O(C) is a bi-
chical pooling of view-specific as- stant Ko) entering from the aspect nary threshold gate that equals
pect categories so as to exploit the nodes on the dendritic tree. Ac- unity when C> O(F). The weights
additional information associat- tivity riding atop background approach asymptotes toward the
ed with permitted category tran- noise - enters via the learned syn- fixed points of 0 and 1 because of
sitions. These transitions are apses corresponding to permitted the quadratic shunting terms that
learned by exploring the object. transitions, and activity is chan- modulate the rate constant Kq.,.

The dynamics of Aspect net- neled most effectively by paired For further details of Aspect net-
works is in the form of differen- aspect nodes in a permitted se- works, see References 1 and 2.
tial equations (shown below) gov- quence. The function l(DA) is a
erning the short-term memory threshold linear function that Rftrrt,es

activity of the aspect nodes Xi and passes activity levels when A > 1. M. Seibert and A.M. Waxman, "Learn-
ing and Recognizing 31) Objects from

object nodes Yk, and long-term O(B). Similar to the aspect nodes, Multiple Views in a Neural SYstem,'"

memory of the adaptive axo-axo- the object nodes also decay pas- chap. 11.12 in Neural Neu'orki5 fr Per-

dendritic synapses W k . Aspect sively to their resting state (with ,,eptio,. oln.L 1. ed. H. Wechsler (Aca-
demic Press, New York, 1991), pp. 426-

nodes are excited by their corre- rate constant Ad.). 444.

sponding ART-2 category nodes The synaptic weights learn as- 2. M. Seibert and A.M. Waxman, "Adap-
tive 3-D Object Recognition from Mul-

li (with rate constant KX) and pas- pect transitions by experiencing tiple Views," IEEE Trans. Pattern Anal.
sively decay back to their resting correlated activity from two as- Mach. Intell. 14, l(7 (1992).

dXi
Aspect nodes: -- = KXIi - AxX,

dt

Synaptic weights: •iI - Wi- + x+ -w(

ART[-2 and Aspect networks, Without any modifica- duce a nceasure of recognition cotifidence derived
tion to the existing networks. Moreover, separate ARE- from the accumulated evidence.
2 networks for each target better support the ATR
task given only a single view (as opposed to a se- Tactical Target Recognition in the Synthetic-

UCnCC of vicws), because each target will have goner- Aperture Radar (SAR) Spotlight Mode

atcd its own set of learned templates within its ART-2 High-resolution radar imaging of a scene can be ac-
module. This design has been adopted for the next complishcd by flying a radar that is transmitting chirp
alpplication-target recognition from SAR spot- pulses from tuany closely spaced look angles (Figure
light sequences. For tiis application we also intro- 19). The moving radar thus synthesizes a long apcr-
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turc, and the return pulses dctcrminc a rekcttilvitv 'he redder may look ahcad to FiguLire 20(a) t)

iniage of the scene as projected into the range and ViCw a typical Clutter s5cncr an ovcrpd1a5 that crossCs

cross-rangc coordinates of the plane formed by the the New York State Tbrussa ..---- obtained from the

synthetic aperture and the radar line of sight. (This Lincoln Laboratorv Advanced )ctcthion Iec-hnologp
plane is referred to as the synthetic-aperture madar, rAKR Sensor (ADTS), a milliictcr-%Naxc radar, opcratim, in
slant plane.) The range resolution is proportional to the SARP mode. (In our work, onh sin glc-dannel
the bandwidth of' the chirp pulse; the cross-range vertical-vertical j\'\' polari/ation rinagcrNv is used.)
resolution is proportional to the angle subtended by Note that the imagY quite spcCklcd, a consequcncc
the synthetic aperture. As the radar moves along the of the coherent ima'i mg method. Nontchlccss, at first
flight path, it can be "squinted" so as to track a fixed glance this scene has a rathcr natural appearance.
location on the ground. Hence, the radar beam lO illustrate here the appearance of ob)ec, Such JS
spotlights a particular scene, and a sequence of SAR ground vehicles, we ref'Cr to the inverse SAR. or ISAR,
images is obtained of that scenc from multiple images shown in Figure 16. Three tactical targets are
views. shown at a radar depression angle (or slant-planc

+

Object competition layer

.i Object nodes

Synaptic arrays of
learned view transitions

View transition

Adaptive weights Aspect nodes ------ l

W, = 1 Input view categories f -

12 3 4 N t Time

FIGURE 13. Aspect network for the multi-object case. Input aspect categories from a single ART-2 network (coding all
aspects of all targets) excite aspect nodes that fan out to all synaptic arrays of learned view transiticns, each of which
conducts activity (i.e., evidence) to its corresponding object node. A competition layer (created from self-excitation and
collective inhibition) determines the target of maximum evidence at any moment, and allows the corresponding synaptic
array to be refined. Sudden eye/camera motions can cause the object nodes to reset their evidence to zero. (For a detailed
description of Aspect networks, see References 10 and 11.)
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40

. 30

20

10

S1.0

S0.5
(a)

F-18

t 0.0

HK-1

F-)

•-Other

1 View number 50

(b) (C)

FIGURE 14. Example of training and recognition by evidence accumulation: (a) view sphere showing the trajectory

from which 2000 views of each aircraft were used for training the system, (b) view sphere showing the trajectory from
which 50 views of an F-16 were selected for testing the system, and (c) graphs showing the recognition test results. In

part c, the first graph plots the sequence of aspects that were recognized by the system (note the transitions). The

second graph shows the activity (i.e., evidence) of the aspect node for each aircraft target, including an unlearned

target (referred to as "other"). And thefinal graph shows the "winning object," or target of maximum evidence at each
moment. Note that the system first declares the target as "other," but then generates sufficient evidence to declare it

correctly as an F-16, and that correct recognition response is maintained.

slope) of 15' and three azimuthal angles correspond- mode SAR sequences, we can utilize many of the
ing to front-on, intermediate, and broadside views, ideas and neural modules developed for the visible

The images were obtained by rotating each target on a imaging domain, as presented in the preceding sec-
turntable in front of a stationary radar. Unlike with tion. The different sensing modality of radar, how-
Figure 26(a), the man-made metallic objects in Figure ever, provides us with direct range and cross-range

16 do not yield radar images that resemble their information, and hence object size, which can be
visible counterparts. The ISAR images are dominated exploited in the grouping process that is used to

by strong returns from select scattering centers on the detect potential targets. On the other hand, our ear-

target, sidelobe responses, and speckle noise. Both her methods of invariant processing must be altered.
Figures 16 and 26(a) possess I-ft resolution in range In particular, the log-polar transform must be dis-
(oriented vertically) and cross-range (oriented horn- carded because the slant-plane image is not an angle-
zontally), with the near-range (closest to the radar) angle image (as is obtained in passivc visible or infra-

located at the top of the image. red imaging).
To build an ATR system that exploits spotlight- Borrowing heavily from our work in the passive

V , "'; I %• ,• ' .! ' ,'. p'! ý ' • , . i: "'," 9 3
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FIGURE 15. lImagrrnq geonmetryv for spotlight-niode synthetic-aperture raclar (SAR). A radlar orr hoardr air air~ raft 1IMI iriintS
an ara of interest (wr tihe groUnd by pointing at a depression anle1 ri'and squ~int anugle,, As the an raft fires alony a sti night
path at aIlrt~ltle hr. the radar tranlsmlits chirp) pulses flom many closely spacedl look angles, and thre ietLIi r1 P)Lulses (1et0r mir1e a

Seilectivity mriage Of tire grounrll patch and objects of interest. Progressinrg along thre flight path, the radar is steered to
I turn ate tire sarre area of intereOst. andl tr us ohtai s a sequ~enice of SAR images from mul1ti pie look arls
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FIGURE 16. Examples of inverse SAR, or ISAR, imgery of three tactical j 0 cI1( vehicles: (a) target 1. (b) target 2. and (c)
target 3. The three targets are shown at three different orientations: the left, middle. and right coIlumns of images, are for
,azinrir.th angles of 0 (front-on viewv), 45 (intermiediate view), and 90 (hroadside view), respectively. The images are for a
radar dlepressiorn angle of 15 and vertical-vertical (VV) polarization.
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rounding clutter, as is typical of constant false-alarm have discarded the original reflectance valttWs of the
rate [CFAR] filtering methods.) Another advantage feature blobs because, in practice, they can vary
of using shunting networks here is that they perform considerably from one instance of a target to another.
an automatic gain-control operation, and, as a result, In the more realistic case of targets in clutter, feature
the large dynamic range of radar reflectances collapses blobs generated by nontargets will also be extracted
into a predefined range in a locally adaptive fashion. from the clutter. Thus, to simulate clutter, we added
These networks are modeled as dynamic membranes 2% random noise to the feature-blob image before
[131 and resemble bipolar and ganglion receptive fields proceeding with the processing. (In Figure 20 the
in the retina, feature-blob image is shown without the superimpo-

Figure 20 illustrates the four steps involved in pro- sition of any noise so that we could illustrate clearly
cessing an ISAR image that contains four targets. The the target feature blobs that emerge from the extrac-
input image is shown in the upper left quadrant, and tion process.)
the result of feature-blob extraction is shown in the Because the image axes are measured in units of
upper right. The spatial patterns of the extracted fea- physical size, we can use the images directly to detect
ture blobs show strong resemblance to the scattering potential targets and discriminate them from clutter
patterns obtained from SARTOOL simulations of and nontarget objects by grouping the feature blobs
radar imagery. (SARTOOL decomposes a target ob- into clusters of approximately the same image size as
ject into its principal scatterers and then combines the the targets of interest. This grouping is performed in
radar signatures of thoe ,:.attercr..) Note that we the ground-plane coordinates, first by using an iso-

(a) Aspect sphere Aspect graph

2-D view 2-D view 3-D target
processing categorization hypotheses

"• Feature Pattern * Transition
extraction encoding detection

Spotlight * ° Target - Aspect M * Transition o Target
sequence detection learning learning recognition

and

" Orientation recognition * Evidence
estimation accumulation

(L)

FIGURE 17. Conceptual approach of ATR neural system for SAR image sequences: (a) spotlight sequence of SAR images
and corresponding aspect sphere and aspect graph, and (b) functional block diagram of system. Note that the approach is
analogous to the approach for passive visual imagery shown in Figure 3.
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Detection and discrimination

Conditioned imagery

S Featue Feature featurei ma g e --u e, -
sequence blb Goudpae clusters cutr

Feature
(Slant plane) Jpoints

Feature point clusters in

View classification target fiame of reference

Spatial categories Spatial code Spatial patternr

Aspect
sequences Spotlight evidence accumulation

Target evidence Maximum evidence WRecognized target

and confidence

FIGURE 18. Modular system architecture for the learning and recognition of 3-D targets from SAR imagery. Thp three rows
of modules represent the three stages of processing shown in Figure 17. Each individual module is a neural network that
transforms the imagery as indicated. From a sequence of SAR images the recognized targets generate a dynamic measu;e
of confidence.

Normalized Center (5 x 5)
contrast image Gaussian

Input SAR image 01 +

Surround (21 x21)
Gaussian

(a) (b)

FIGURE 19. Shunting short-term memory model for feature extraction from SAR imagery: (a) center-surround feedforward
architecture and (b) center-surround receptive field. The model is implemented as a feedforward dynamical system with an
excitatory ccu;ter/inhibitory-suirrourid receptive field. In equilibriurii the resulting image represents locally normalized
contrast. The scales of the receptive field-5 x 5 for the center region and 21 x 21 for the surround region-are chosen to
capture the contrast between scatterers and target objects. (Note: A descriptio., if the qcluatieos that govern shunting
short-term memory and the equilibriumi condition are given in the box "Shunting Short-Term Memory" oil page 98. For
further details, see Reference 13.)
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SHUNTING SHORT-TERM MEMORY
oI

THE FULL DYNAMIC range radar hibitory input from a Gaussian is weighted by Gi'k. More gener-
image I. serves as input to a shunt- surround S, and passive decay al shunting networks are described

ing short-term memory (STM) (with rate constant -A) yield an in Reference 1.
network (Figure 19), as governed equilibrium contrast measure Ai

by the dynamics of a charging that is normalized with respect to Re~frence
1. S. Grossberg, "Nonlinear Neural

membrane (essentially Ohm's the local mean amplitude. The Networks: Principles, Mechanisms,

law). Excitatory input from a Gaussian center is weighted by and Architectures," Neural Networks

Gaussian center C', shunted in- Gc', and the Gaussian surround 1, 17 (1988).

Activity dynamics: d -AAAj + G" I (1 + A,) G Idt- 1 1 j
j k

G', Ij - Gk Ik

Equilibrium contrast: A, k C S

411 Gk I'k AkA + S

k

tropic receptive field (shown as circular areas in the target. The input slant-plane Iniagery is shown in the

lower left quadrant of Figure 20), and then by using upper left quadrant of the figure, and the localized

oriented rectangles in the vicinity of the isotropic target fature blobs are shown in the uipper right.

groupings. The rectangles arconstructed from in- After the tfatures are reoriented in a franic of refer-

hibitorx'-ccnter/excitatorv-surround receptive fields, ence with respect to the target, a 1)111t network is used

motivated by the scatterer distributions that arc typi- to reduce the features to points, as showin in the lower

cal of the targets of interest. (Given a view sequence left quadrant. This oriented spatial pattern of fe.ature

in which targets may be considered stationary as corn- points covers an extent of approximately 20 x .30

pared to the moving and squinting radar. Adaptive pixels at 1 -ft resolution. Moreover, as the target orien-

l.incar Neurons (AL)AI.1NES) [181 performing a re- tatitO and radar depression angle change, this patterni

cursive least-squares estimation from the measure- must change quickly. too. Ofequal importance is the

menits can be used to estimate and refine the target deformation of this ft'ature pattern with varying radar

locations and orientations. After a target has been squint angle (given an identical depression angle and

detected and localized, it can then be segmented from target orientation with respect to the radar). For these

the scene, rotated into a reference framc aligned with reasons, a template constructed from this feIature pat-

the target (with an ambiguity between whether the tern (no less a template that incorporates the original

target is facing forward or backward), and processed reflectaicc\ values) is both memory intensive and

hv the remainling modules. The oriented feature blobs fraught with diffictlties. Thus we can again titiliie the

for each detected target are shown in the lower right large overlapping receptive fields (cft. Figure 7) to

qtiadrant of IFigure 20. Note that sidelobe responses reduce this binary feature pattern to a ) x 1) array of

outsij&' ltW targets have been discarded. analog numbers that code the spatial distribution of

Figure 2 1 illustrates the processing of an individual features in a compressed ,iincr that robust tw

98 . ' v . .
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FIGURE 20. Milti~t r(Jet iocaliriataor arrcl( orie-ntathonl estrrlraton is iiiiitrteltl for the as ,1 ofl' four fartia ltl tatr(jetl• Tho, OI1I/-,
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spatial deformation. Such a coding is illustrated in the 11). The data consisted of ISAR images created at all

lowc.r right quadrant of Figure 21. even azimuths 360' around each target, for radar

The 9 x 9 array of 81 numbers forms the input to depression angles between 150 and 320, comprising

an ART-2 network that is dedicated to the learning of approximately 3000 views of each target. (Note the

a particular target. The target is learned during a missing data at a few intermediate depression angles

training session in which the target exposure is con- for targets 2 and 3.)The resulting unsupervised classi-

trolled. In a testing session, the system is run in fication generated islands of common category that

recognition mode, and the 81-member spatial code extended over large azimuthal extents and many de-
vector is fed to all ART-2 networks representing all pression angles. We purposely changed the vigilance

targets of interest. Figure 22 illustrates the results of parameter setting between targets to emphasize the
trainiiig independent ART-? networks on each of the user's control over the fineness of categorization. With

three ISAR targets of Figure 16. The resulting aspect a finer categorization, more details survive the learn-
Lategories that were established are shown color coded ing process. The roughly 3000 views of each target

on aspect spheres seen both from the side with the have been compressed into only 34 categories for

targets facing left, and from above (compare to Figure targets I and 2, and 75 categories for target 3, for

which we used the highest vigilance setting.
Associated with each category allocated by each

ART-2 network is a template of the prototype 9 x 9

array (contrast enhanced and normalized) that was
learned by the synapses (the adaptive LTM sites) in

the network, as shown in Figure 8. Eight of the prin-
cipal templates for target I are illustrated in Figure

23, along with sample slant-plane images from the

corresponding viewing directions. Note that the

learned templates include two broadside views, fron-

tal and end-on views, and the characteristic L-shapes

near the four corner views. These color patterns code
prototype spatial feature patterns (not reflectance

patterns).
To complete the learned description of each target,

the permitted transitions among aspect categories must

be detected and imposed on the synapses of each

Aspect network. The result of this process is con-

rained in the last row of photographs in Figure 22.
FIGURE 21. Target feature extraction and spatial coding The photographs show the transition matrices for
for a single target. The upper left quadrant shows the each target (cf. Figure 13). In the matrices, a red pixel
input slant-plane image of a target at a depression angle of corresponds to a permitted transition while a green
150. In the upper right quadrant, feature blobs have been
extracted from the input image and projected in the ground pixel codes the absence of such a transition.
plane. After the feature blobs are reoriented in the target Figure 24 contains an example of our ATR system
frame of reference, a DEB network is used to reduce the running in recognition mode. We used an ISAR im-
blobs to points, as shown in the lower left quadrant. The age sequence that consisted of 45 views of target 1
feature points are then coarsely coded by a 9 x 9 array of (only the odd azimuths in the interval 67' to 1570) at
overlapping receptive fields (cf. Figure 7), as shown in the a depression angle of 21 °. (Note: Although this dataset
lower right quadrant. The color bar at the bottom of the
figure denotes increasing (from black to white) reflectivity
for the upper left image, and increasing receptive-field tedly not very different from the training data. This

activity for the lower right image. lack of adequate training and test datasets is a prob-
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(a) (bi) (C)

FIGURE 22. Aspect sp~heres and transition matrces tor (a) target 1, (1)) target 2, an Mc target 3. The spees vee generatedl
wvith Independent ART -2 networks. For each tar get. appr oximately 3000 views, collected f or even az imuths 360 a ounrd and
depression angles from 15 to 32 . have been compr essed into 34, 34. and 75 categories for tar gets 1. 2, and 3. r espectrveiv.
The categories, or aspects. have breeni assig ned colors arnd are shown on a viewing sphere froim the sidep with the tar get
fac inrg left (to p row of ph otocgraphs) arid fro ii above. (center rowv of lihotog rap is). Note the category Islands that emerge
over large viewi 1(1 extents, particLlarly for target 1. The fineness of categoriation is conti oiled hy thre vigilance parailieter of
the ART *2 netwvork, and~ can) he Chosen to he mloe or le's's sens-ifive to variations In the featirie patter ns. The vicl lance ýýis

g.97. 0.98, arid 0.99 for targets 1. 2, arid 3, respectively. The last row of phiotog raphis shows the category transitions that werew
learned for each target hy Independent Aspect ne0twVorks conpied0c to eachI ART-2 rietv.ork. Each ti arisiton miatr ix codes
poss-ihie Category transitions III red, while greenl dlenotes the aheicOf suIch a transi5tionl (cf. Figlure 13). Note that the
transition patterns are' gIIrte different arionig thre targets,. Detected transitronis hetVýeenr categories -oritirhnrLte to thre

Ovirlerco accumurrlationn (hiring tPIre reogirfitOrI Irroce'Ss.-

I 0)
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Icm with mianly AIR studies.) The test imagery was significant amount ofcvidence. [hus selecting target

passed throtugh the early n)odulcs ofotur sysstem, and I solely oil the basis of nIaximtlm c\ idcnce cal be
then to tour ARTI2 networks (with Icarning turned risk,, bccatusc the evidence for target 1 may vxcecd
off) coupled to fotur Aspect networks corresponding that for target 3 by only a slight anotunt. TI'his possi-
to the training targets I, 2, and 3. in addition to a bilit% suggests looking at the dci/.i'rcai,/icuc, be-
fourth unlearned target (referred to as "Other") that tween the tw•,. :arguts of highest accumulated cvi-
was represented by random synaptic weights. Each dence, as illustrated in the fourth graph. The
ART-2 network dtetermitincd the best matching aspect dift'rential evidence may be small fbr somne \vicws, but
category fir the test target, and each ART- 2 network it too can be integrated along the tcmporal vsiew
activated its corresponding Aspect network to accu- sequecnce, giving rise to a dfinwmic con/ii'ne m, sure.

mrulate evidence over the test view seqltuentcc. A comn- As shown in the bottom graph of' Figure 2-4, the

petition betwee n the objcct nodes in the dif'crent confidentce nmeasure increases monotonically along the
Aspect networks then selected the target with the view sequence in this examnple. It is a nattcr of'tprc'fr-

instantanleouls maximu, m evidence. ence to select the threshold level of confidence that
In Figture 24, the category scquence recognized by the sN'stem should use ini declaring a target as rccog-

the ART-2 network for target I is illustrated both on ,nizcd. Clearly, the nutmbcr of views rcquired to reach
an aspect sphere seen from above, and as a graph of tills confidcnce threshold will depcend onl the target
category versus view numlber. ihe second graph in itself' as well as the starting view in a scqucncc.
Figure 24(b) plots the accumulation of evidence for

each target, while the third graph indicates the se- SAR Image Conditioning Using

lected target with the maximum evidence accumut- BCS/FCS Networks

lated at each view. Although the selected target is We have already noted that single-channel SARI imag-
target I. we can see that target 3 also accutnulates a crv is characterized by a very large dynamic range and

Eu-E
FIGURE23. Aspect sphere, example typical views, and corresponding learned templates for
target 1 of Figure 22(a). The learned templates include two broadside views, frontal and
end-on views, and the characteristic L-shapes near the four corner views. Note the ability of
the ART-2 network to quantize the viewing space around a target in an unsupervised
fashion. The learned templates are then used for the recognition process.
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excessive speckle noise, and man-ma e objects possess large body o" psychophysical perceptual data.
rather broken signatures that vary rapidly with small The BC'S/FC'S networks are shown as an altcr-

changes in viewing angle. To a great extent, we can native first module in the AIR system of' Figure
alleviate these problems by first conditioning the ir- 18. Our preliminary work indicates that the initial
agery with the Boundary Contour System and Feature processing of SAR imagery with BCS/FCS networks.
Contour System (BCS/FCS) network paradigm devel- in lieu of a shunting center-surround network, mi-
oped by S. Grossberg, E. Mingolli, and D. Todorovic, proves the target detection (and false-alarm rejection)
(see chapters I to 4 in Reference 19). This neural process.
processing architecture is strongly motivated by the Preattentive vision, in its simplest form, is a corn-
known anatomy and physiology of the early visual putational process in which contours are contextually
processing stages, including that of the retina, LGN, established and the perceived brightness (and color) is
VI, V2, and V4. The architecture, which essentially generated primarily from local-contrast information.
incorporates a general theory of preattentive vision, In BCS/FCS theory, the role of the BCS network is to
has also been quite successful in explaining a very establish such contours in the context of local fields of

50
0

1.0
Target 1

aT,

0.0
t) Target 3

(a) CD

H' Target 2
FIGURE 24. Example of target recog- 0

nition by evidence accumulation: (a) ._ Target 1
aspect sphere and (b) recognition re- _ Other

suits. The ISAR image sequence
used consists of 45 views of target 0
(only the odd azimuths in the inter- 0.5

val 670 to 157°) at a depression angle 2 a)

of 210. The category sequence rec- >
ognized by the ART-2 network for a) 0.0

target 1 is represented both on an 7.0
aspect sphere seen from above in

aeo
part a, and as a plot of category ver-
sus view number, as shown in the o
first graph of part b. The next graph 0.0

shows the evidence generated by the 1 View number 45

resulting category matches for the (b)

training targets 1, 2, and 3. The third graph indicates the "winning object," i.e., the selected target with the maximum
evidence accumulated at each view. The target with the instantaneous maximum evidence is consistently target 1,
although target 3 also has a strong response. The differential evidence between those two targets is plotted in the
fourth graph, and integrated across view numbers in the fifth graph to generate a monotonically increasing confidence
measure.
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Cooperative-competitive (CC) loop edge fragments, or oriented contrast. Alr,,'igh such
bound,.'!y contours are themselves invisible, thb'v modu-

late the dynamics of a diffusive t;lling-in process inl
the FCS network whereby local contrast and bright-

_ + _+ +ness information mix and spread within such bound-

.... ....................... ... .................. aries to create a sm oothly shaded figure.
The architecture of the BCS network is illustrated

in Figure 25(a). Beginning with monocular prcpro-........................... . ..... . .......... .. .. •cessing in the fort m of shunting center-surround re-

ceptivc fields, local measures of normalized isotropic
+ contrast are made. An oriented-contrast filter then

- " + -- _- derives evidence for local eaee frigm'nts, whiLh are
then used as input to a coopcratit'e-compe'titvte ((.C)

Static oriented- feedback loop. The CC loop performs long-range
contrast filter ... completion of contours in the context of the local
(SOC f ilter)

edge statistics. We have found that one pass through
" the CC loop is :ypically sufficient for our purposes.

-+-- The boundary contoutrs obtained flora the BCS net-
i cwork provide input to the FCS filling-in network,

- huntin c - s - - - - - - - - - - - - - - - - along w ith the center-surround contrast s",'nals, as

Legend shown in Figure 25(b). Essentially, the contrast sig-

Center- Spatial nals try to spread diffusively to neighboring nodes,
surround 0 0 0 competition but the BCS signals modulate the local difftsivity

0 receptive field (spatial
(discount sharpening)
illuminant)_-' Orientational FIGURE 25. Architecture of the (o) Boundary Contour Sys-

Oriented- ("3 competition tern (BCS) of S. Grossberg and E. Mingolla and the (b)@ contrast (orieitdtional Feature Contour System (FCS) of Grossberg and D.
detector sharpening) Todorovid. The BCS architecture in part a models the
("edge" O(detetio) O On-off antago- neurodynamics of preattentive visual processing ir, the

detection) On nism (spatial LGN, V1, and V2 visual areas of the brain. Shunting cen-

Oriented- impenetrability) ter-surround receptive fields provide input to oriented-
contrast Bipole receptive contrast, or edge, detectorb that compete across position
detector field (long-range and orientation. The resulting local edge fragments are
(contrast grouping and grouped over large distances by oriented bipole receptive
rectification) completion) fields that feed back to the orient'd-contrast detectors to

(a) complete broken boundaries comprising the edge frag-

ments. The boundary contours obtained from tVe BCS
Boundary network provide input to the FCS network, which uses the
contours information to modulate the local diffusivity between com-
from BCS partments, as shown in part b. The local diffusivity be-

! tween compartments affects the FCS diffusion layer, where
FCS ! I the contrast signals from the shunting center-surroind

diffusion I I network spread laterally in two dimensions. In the diffu-

sion layer, strong boundary contours inhibit diffusion

Contrast + + across the boundaries. The FCS architecture models hy-signtalst + + +
signals pothesized filling-in interactions in the V4 visual area of

from center- the brain. (Adapted from Figures 15 and 17 of chapter 1 in
surround Reference 19, with permission. This reference also con-

field (b) tains a detailed description of BCS/FCS networks.)
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stir h ~rtstrng ouindarv Coil ours inhibit dli fusionl

arcross tile boundar1ieS. T[hus tile boundary Con tours

HimpedeI the spreading cont rast signails. In tepeec

of a dense wseb of' boundar~y c~ontours of' varying

Streng~th, the 1( S dfifftLisiari process results InI srilootlvk
shade~d 1iil dcs whilc e Ftaining sharp transitions InI

brightness.
III applying B( .5 CS processing to) SAR irnlaterV',

various paranieters in til governing, dvinmilCal svs-
telIl nee~d to be selec.ted so that thle pixCI vaIlues arc riot

dISICOU nt(Cd COIli pletelYN (because tile original SAR imi-
aWe kbidihtri1cs5cs r actually reflectance measuires).

%X all thenr preserve thC ordering, ot' the resulting
brigitiiesses in farilx-N uniform rass a o ii the

ordering of- the initial reflectance Values. InI nIonuiII-
f .ormi areas. I wever, thC reSLiltiii' So'nalS indicate a a
m~ixture of reflectance and local contrast. The overall
Ctt'c~t is SAR inmagery wirth sigiii'ficaIritx less speckle
noise, darkened and sharpened shadows, and mlore
smoo0thly shaded SIL~nattircs. Figlure 26(a), obtained
With the Lincoln L aboratory' A[ YS SAR, illustrates a
clutter st erie of t~ees, r )ads, and an overpass that
crosses thle New York State ThruIway. [hle imiage was
Olltail;Ad withI single-chatnnel V~V polarization at I -ft
resolution. Because of thle lame, dyniirnic ragtI

scene is displayed as a1 log-anpllitUde nimage. ig-ty
tire 26(b) shows th, samec scene al-ter BCSIFCS
processing of tile full-dviamilc-range SAR imnage.
Note the dranriatic reduction in speckle, the darken-
ing, of shadows, the sharpening of shadowv contoiurs,
amid thle sniooth shading of the treetops, roads, and
grass.

FiguLre 27 Illustrates tile various stages of process-(b
inig for the three ISAR targets orienited at a 45' azi-
nin1.th and a 1 5' radar depression angle. The log- FIGURE 26. SAR image conditioning with BCS/FCS net-
aniplitLIide ISAR inagery 'is shown in the first coIlumn11 works: (a) original SAR image of an overpass that crosses
tile contrast-enihaniced Output Of thle Shunting center- the New York State Thruway and (b) image after BCS/FCS

surrtin newor is ontine inthe ecod CI~iin, processing. The original single-channel VV-polarization
surrbound anetwork oui s cont ived i on the se cn column image (shown as log am plitude of the reflectance) is coin-

the ounaryConour deivedfroii he CS et- rupted by speckle noise, which results in many false aIarms
work are given iii the third coIlumnI, and the sniooutlly making target detection difficult. In the BCS/FCS-pro-
shaded signatures obtained froni the FCS nerwork are cessed image, note the reduction of speckle noise, the
in the fouirth coluriin. An iniportant attribute Of tile darkening of shadow areas, arid the cr'spness of the

FCSfile-I sinaurs s tatthy rcquiltetal shadow contours. Such image conditioning iniproves tar-
withresectto siial cangs ii tagetoriei titiii. get detection while reducing false alarms. The SAR image

1ý was obtained with the Advanced Detection Technology
For ~ ~ ~ ~ ~ 1 Al1apiain1nvligSRIaey 13(~ Sensor (ADTS), a Lincoln Laborato v *;iilliriieter-wave

FKS processinrg is a rusekil i rflagC-COrldi t iouinrg proce- radar.
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dure. We expect it to improve both the target detec- to the system. (Note: This sequence was not part of
tion and recognition stages of our ATR system, the data used for training the system.) Again, evi-

dence was accumulated for all three targets in addi-
Reentry-Vehicle Recognition tion to an unlearned target, the target of maximum
from ISAR Sequences evidence was chosen, di;U'tcntial evidence was com-

We have also applied our SAR target-recognition sys- puted from the two targets of highest evidence, and
tern to the identification of reentry vehicles imaged the difference was integrated along the view sequence

by a ground radar while the vehicles were spinning to generate a confidence measure. In Figure 30 we see
and traveling along a trajectory. The resulting reentry- an example of the system changing its selection. The
vehicle images are thus ISAR imagery, although they system first (correctly) chooses RV-3 although the

are in general simpler than that obtained with tactical confidenct s still relatively low, then the system gets

targets in clutter. Radar processing is typically done in confused and switches between the other two ve-
the range-Doppler domain to extract peaks corre- hicles. The switching resets the confidence to zero,
sponding to isolated scattering centers on the vehicle's and it remains very small due to th,. small differential
shroud. We can then apply to these data the same evidence generated. Finally, the system locks back

three stages of processing that we applied to the ISAR onto the correct decision, and confidence builds
tactical-target imagery: the range-Doppler peaks can monotonically.
be used as point feature patterns, the patterns can be Table I (page 109) summarizes the results of pre-

encoded by overlapping receptive fields followed by liminary recognition experiments on these three reen-

classification with ART-2, and evidence and confi- try vehicles. In each case the test sequence consisted
dence can be accumulated with the Aspect network. of 90 images starting at randomly selected azimuths.
(Note: An alternative approach to the learning and In all cases the correct vehicle was recognized, and

recognition of reentry vehicles has recently been re- fewer than 25 images were required in each sequence
ported by A.M. Aull et al. [20].) to converge to a high-confidence correct decision. By

With this approach in mind, we have constructed converting this result to the fraction of each vehicle's
ISAR imagery of point scatterers for three reentry rotation cycle that is required to achieve such recogni-
vehicles over several rotations at a single angle of tion, we find that fewer than two revolutions were

attack (i.e., a single depression angle). The vehicles required in each case.
are designated as RV- I, RV-2, and RV-3. Figure 28
illustrates the result of coding and ART-2 category Learning and Recognition Using

learning for vehicle RV-2 at a vigilance setting of Salient Object Parts

0.95. Aspect categorization over multiple rotations The 3-D object learning and recognition system de-
are shown on an aspect sphere, along with the learned scribed thus far processes the views of objects as a
templates and typical feature patterns for the six cat- whole. But this approach can lead to a decline in
egories that ART-2 established. Figure 29 shows the recognition ability when an object is partially oc-
results of separate ART-2 categorizations for all three cluded or disguised, or when a part of the object is
reentry vehicles over multiple rotations, as well as the articulated or variable (removed or replaced). To
learned transitions among aspect categories used by deal with these situations, we return to biology for

the Aspect network. The three vehicles differ in their guidance.
complexity, which is reflected by the number of cat- The brain processes information by using a prin-

egories required by ART-2 to cluster the data: 3, 6, ciple of contrast. Many operations seem to be cast in
and 16 categories for RV-l, RV-2, and RV-3, terms of differences, or in terms of the detection of
respectively. novelties or transitions in space, time, or patterns.

The results of a recognition experiment are shown Mechanisms exist that detect novel changes, as re-
in Figure 30 (compare to Figure 24). In the experi- flected by the peak in EEG measurements that occurs
ment, a sequence of views of vehicle RV-3 was input 300 msec after the introduction of an unexpected
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(C)

(c)

FIGURE 27. BCS/FCS processing applied to the ISAR images of (a) target 1, (b) target 2, and (c) target 3. From left to right,

tile column1 show different stages of tile BCS/FCS processing. The ISAR imagery (first column) is contrast enhanced by a

shunting center-surround network (second column) and boundary contours are extractco (third column). The contrast-

enhanced imagery diffuses within the boundary contours to produce filled-in target signatures (fourth column). All three

targets are oriented at a 45 azimuth and a 15 radar depression angle,

FIGURE 28. Learned categories for reentry vehicle RV-2 are plotted on an aspect sphere over four rotations of the target.

(For convenience, the data for each of the four rotations have been plotted on the aspect sphere at different shifted
depression angles. Note the four rounds of colored dots on the sphere.) During the learning process, ART-2 generated

only six categories (at a vigilance setting of 0.95). The learned templates along with the representative scatterer patterns for

the six categories are shown. From the upper right corner of the overall figure, the corresponding colors for the learned
templates are dark brown, dark blue, green, light blue, white, and light brown.
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FIGURE 29. Lear ned categories (aspect spheres) and transition matrices for thle (a) RV-f. (b) RV-2. and (c)
RV-3 reentry vehicles over multiple rotation cycles. The vigilance setting is 0.95, 0.95. and 0.96 for the three
reentry vehicles, respectively, anrd the resulltinlg number of categories established is 3.6. and 16, respectively.
(Tile. difference inl the numlber Of categories reflects differences inl the complexities of the three vehicles,) Ini
thle transition matrices, thle possible category transitions are coded inl blue, while red denotes thle absence of
SuCh1 a transition.
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FIGURE 30. Example of recognition o RV-SRV-1
by evidence accumulation: (a) as- 2Ea
pect sphere and (b) recognition re- oS RV-2

sults (cf. Figure 24). The category Other
sequence recognized by the ART-2
network for reentry vehicle RV-3 of .

both n d) 1.0Figure 29(c) is represented both on
an aspect sphere seen from Abn,', (

in part a, and as a plot of category 0 _ _ _ _ __-_versus view number, as shown in00 " -

the first graph of part b. The next
graph shows the evidence generated 45
for the three different reentry ve- .•
hicles, the following graph shows ~0
the selected target with the maxi- • 0.0
mum evidence, and the last two 1 View number 90
graphs show the differential evi- (b)
dence between the two highest scor-
ing targets and this differential evi-
dence integrated along the view sequence to give a measure of confidence. In this case, the system initially
identifies the target correctly and confidence grows, although the differential evidence remains small. But the

system then changes its decision, causing the confidence to be reset to zero. Finally, the system reverts to the
correct identification and locks in on that decision, and confidence grows monotonically.

Table 1. Reentry-Vehicle Recognition Results

Test Number of Images Correct Number of Images Fraction of Rotation
Vehicle in Test Sequence Recognition Required for Cycle Required for

Convergence Convergence

RV-1 90 Yes 4 0.15

RV-2 90 Yes 9 0.33

RV-3 90 Yes 23 1.58
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to determine what information is useful in recogniz- ART-2 networks. Each of these category nodes has a
ing the differences between the various types of ye- corresponding view-description template with other
hides that are being sought. associated information, including its own Saliency

In our research, we use difrrencingr to generate Map. Each tank's Saliency Map indicates which parts

expectation-driven part segmentation cues. As with are mosit -.2ient to discriminating that particular tank,
the 3-D object learning and recognition system de- and the saliencies predict which parts should be in the
scribed earlier, in Figure 31 the best-match aspect image from that vantage point, if the object in ques-
category for tank 1 can be located on the tank-I tion is indeed that particular tank. The predictions
aspect sphere. The category carries with it a learned become expectation-driven attentional cues for seg-
template of the invariant appearance of the object. menting the most salient parts of the image, as shown
For the extension to part-based representations, the in Figure 32. With Saliency Maps, we not only know
category must also carry a more complete description what parts to look for, but we also know uhere to look
to include characteristic attributes of the object such for those parts relative to other parts and to the object
as scale, orientation, context, and other information, as a whole. As each expectation is investigated, it
(Recall the what and where visual pathways, and their either confirms or contradicts the hypothesized de-
interaction, mentioned earlier.) In addition to a de- scription, and evidence is accumulated or dissipated
scription of specific views of specific objects, the sys- for each potential model target.
tem also requires a description of the views of generic A Saliency Map can be obtained for a particular
(i.e., average) objects of a class. The generic-object object by computing the difference between the de-
description is necessary to represent efficiently the scription of the characteristic view of that object and
hierarchical descriptions that have been learned, as the corresponding description of the characteristic
well as to navigate quickly through the representation view of the class of objects to which that particular
during the recognition phase, as described below. A object belongs, i.e., the generic object. Figure 3 1 illus-
generic-object description subsumes the descriptions trates this process. (Note: For simplicity, the Saliency
of all the specific objects that are associated with it. Map shown in Figure 31 was derived from the origi-
For instance, a generic cannon-tank side view is the nal gray-scale imagery. In a complete implementa-
average of the side views of all tanks that have can- tion, however, the Map should be obtained from an
nons. Thus the generic view is a generalized compos- invariant description of a view, such as a log-polar
ite representation. mapped image with the illuminant discounted in the

After an ART-2 category is activated, the next step case of passive visible sensors.) As an example, we
in the object-part process is to compare the descrip- might have a generic class of objects that are tanks
tion associated with the activated category node of with cannons, turrets, and treads, and included within
tank I v. '. the corresponding previously learned de- that class we might have M48 and M60 tanks. Then
scription for "he generic tank. The differences be- the Saliency Map for the front view of an M60 tank
tween the two descriptions are reported in the form of represents the differences between the front view of
a visual map called the Saliency Map. If all tanks have the M60 and the front view of a similar class of tanks
exactly the same treads, turret, and cannon, then in general. Such differences are referred to as "activ-
these parts are not salient to the recognition or dis- ity"-the greater the difference in a particular area of
crimination tasks, and they will not appear in the the Saliency Map, then the greater the activity in that
Saliency Map. On the other hand, if the gun is longer part. Areas in which there are no differences (i.e., no
for tank I than for other tanks, then this difference activity) are ignored in the scheduling of attentional
will be evident in the Saliency Map, and the degree to shifts.
which it is highlighted is used to prioritize the serial Using Saliency Maps, we can organize a hierarchi-
attentional examination strategy. cal representation of the learned objects, Figure 33

Of course, an input image can activate (to various illustrates an example hierarchy of tanks. Beginning
degrees) the category nodes in many different tank at the upper left are the descriptions of a generic tank
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Generic tank

Generic-tank aspect
Tank 2

Tank-1 aspect Tank-1 caricature

+

FIGURE 31. Construction of a Saliency Map and corresponding caricature image for the side view of tank 1, an M60 tank. The
Saliency Map is created by taking differences between the side view of tank 1 and the side view of a similar class of tanks in
general. (This class of tanks is collectively called a generic tanA). The caricature image emphasizes the salient parts of tank
1 with respect to the generic tank. The salient parts in a Saliency Map are used to generate attentional cues for the
recognition and discrimination of a particular object among similar objects, and the use of caricatures increases the
efficiency of this process.

from various aspects. If all we desire,, to discriminate ample, additional Saliency Maps indicate the differ-

between tanks and aircraft, then this level of descrip- ences between these two types of tanks and the ge-
tion may be adequate. If, instead, we desire to dis neric cannon tank. Although Figure 33 shows only 2-
criminate between a flamethrower tank and a cannon way branching, the branching often is N-way.
tank, then more detailed descriptions indicating the Caricatures of the object descriptions can be used
information-carrying attributes of both types of tanks to increase the efficiency of the recognition process.

are needed. The Saliency Maps described earlier natu- For the recognition of human faces, there are many
rally contain this information, so that if an object has different possible facial caricatures that can be used,
been determined to be a tank, the Saliency Maps depending on what qualitie, are emphasized. A cari-
indicate exactly what must be investigated to make a caturist might empitasize age, sex, beautv, or simply
more refined decision about which specific tanl< 1. it the differences evidenced between a particular face
object is. Once the tank has been recognized as a and a corresponding generic age-matched, sex-matched
cannon tank, either an M48 or an M60 in this ex- face. P.J. Benson and D.I. Perrett 18] have demon-
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Object-part decomposition

* Salient part discovery and learning

* Class-object-part hierarchy learning

Attentional Aspect Part
priming indexing priming

Segmented-object Feature extraction Aspect categorization 3-Dobject
view recognition

vw Part segmentation Multi-aspect pooling

•Invariance transformations Evidence accumulation]

2-D view processing 2-D view classification

FIGURE 32. Conceptual approach to the learning and recognition of class-object-part hierarchies. Again, views are

quantized into aspects through the use of unsupervised learning, but objects of a class are averaged together to form

generic-object representations. Differences between specific objects and the generic object of that class are highlighted

on a Saliency Map (Figure 31), which is then used to focus attention on salient parts during the recognition process.

Recognized aspect categories for salient parts generate evidence for targets. In addition, the categories prime the system

with expectations for other parts at certain locations.

strated a reduction in reaction time in the recognition grammed to travel a reconnaissance path, detect and

task for subjects who are shown a caricatured face track objects as it moves, and recognize objects it has

versus a non-caricatured face. learned. Arrays of light bulbs, such as the ones shown

Caricaturing occurs naturally in the class-object- in Figure 34, have been used for the target objects.

part hierarchical representations of Figure 33. Corn- Currently, MAVIN is also able to recognize silhou-

puting a difference map between a description of an ettes of objects that can be segmented easily from the

input target image and a previously learned generic background. Equipped with binocular cameras, MA-

description leads to the detection of differences be- VIN operates in real time, with feature extraction

tween the two descriptions. With that information, running on a PIPE video-rate parallel-processing com-

the differences can then be emphasized, resulting in a puter, and all other neural network computations

caricature of the input description. Because certain running on SUN computers. (Capable of I-billion 8-

parts in the caricatured map have been exaggerated, bit integer operations per second, PIPE was devel-

they stand out even more strongly, and, because the oped for robotic vision at the National Institute of
non-differences have been suppressed, attention can Standards and Technology [NIST] and manufactured

be focused more quickly on the parts of the input by Aspex Corp. of New York.)
image description that are most unusual and there- Our past investigations have incorporated the vi-

fore most likely to carry discrimination information. sual learning and recognition system into a neural

Figure 31 contains an example caricature image of a architecture that is capable of supporting various Pav-

tank. lovian behavioral-conditioning paradigms based on
learned associations and expectations, including

Visual Navigation by MAVIN excitatory conditioning, inhibitory conditioning, sec-

The AIR system design described in the section "Air- ondary conditioning, and the extinction of condi-
craft Recognition from Visible Image Sequences" has tioned excitors [22, 23]. We have recently extended
been implemented at Lincoln Laboratory on a mobile the MAVIN system to incorporate the learning and
robot called the Mobile Adaptive Visual Navigator recognition of environments that are defined by the

(MAVIN). Shown in Figure 34, MAVIN can be pro- layout of visual landmarks observed during explora-
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tion [24, 25]. Associative learning methods similar to has been to demonstrate in the laboratory the system's
those used for learning 2-D feature patterns have ability to recognize in real time both fixed landmarks
been applied to spatial patterns of recognized visible and mobile targets from a sensor platform that can
landmarks to establish place cells, which qualitatively navigate through, explore, and map an environment,
map an environment based on its visual surround- viewing the scene from a variety of vantage points.
ings. We are currently incorporating displace cells into Indeed, MAVIN has proven to be an excellent experi-
the architecture to code placefie/d transitions that are mental domain to test the ATR systems that we have
induced by robot motions. (A place field corresponds developed.
to an area in the environment where recognized target
landmarks possess a similar spatial layout.) These con- Conclusion
cepts for the qualitative mapping and navigation of Our strategy of using the unsupervised learning of
space are based on behavioral experiments with rats, view-based, invariant representations in conjunction
and on the physiological measurements of neurons in with evidence accumulation that exploits view transi-
the rat hippocampus. tions has proven effective in several sensory domains,

An important motivation for developing MAVIN and is relevant to both automatic target recognition

Generic-tank
aspects -

Saliency Map

Cannon-tank Saliency Map M60 aspects
generic aspects

,• i •QSaliency Map •1

M48 aspects

Flamethrower-tank generic aspects

FIGURE 33. Hierarchical object representations are a natural consequence of the Saliency Map approach. The Saliency
Maps direct a branching down from generic object to specific target, which may be unique because of some specific part.
Because of this hierarchy, Saliency Maps can be used in the recognition process to guide a rapid search among learned
categories.
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FIGURE 34. The Mobile Adaptive Visual Navigator (MA VIN) developed at Lin-
coln Laboratory. MAVIN, a mobile robot with binocular cameras, provides a

testbed for a passive-vision ATR system iii which the concepts that underlie 3-D
object learning and recognition have been extended to the learning of represenl
tations for environments that are defined by distributions of visual landmarks.
This extension supports the ability for an autonomous sensor platform to ex-
plore, map (in a qualitative fashion), and navigate through environments con-
sisting of fixed landnmarks and moving targets. The neural architecture being
developed is based onl studies of the rat hippocampus.

(AIR) and environmencrt navigation. But perhaps ISAR targets. We are gratefuil to Jac+ues \'erlv and
the miost important lesson we have learned is that Carol 1.azott of the Machine Initelligence technology
mianyv valuable insights can he gained fromn serious I aIIGroup for construicting thle ISAR target imagery from
stu~dx of thle brain and behavior. Anatomical, physi- thle radar phase histories. We are also indebted to thle

Plgcal, and psychophy~sical studies have all helped SIgntr" tde n nlyi ru o rdn

.shape thle compu-1.tational theories and s 'ystemr archi- us with the range-IDopplcr peak data. This work onl
tectures used in our- work. We believe that Such stuid- reentryN-vehicle recognition was done in con'tunctionl
ies will continue to enable rapid progress in the ATR with Bob Gabel of the Machine Intelligence 'technol-
fleld. ogv (srnup. We also wish to acknowledge our ongo-

ing collaboration wvith professors Stephcn ( rossberg
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Multidimensional Automatic
Target Recognition System
Evaluation
Paul J. Kolodzy

U We are developing an evaluation facility that includes an electronic terrain
board (ETB) to p:'ovide an effective test environment for automatic target
recognition (ATR) systems. The input to the ETB, which is a high-performance
computer graphics workstation, is very high-resolution data (15 cm in 3-D)
taken with pixel registration in the modalities of interest (laser radar, passive IR,
and visible). The ETB contains sensor and target models so that measured
imagery can be modified for sensitivity analyses. In addition, the evaluation

facility contains a reconfigurable suite of ATR algorithms that can be interfaced
to real and synthetic data for developing and testing ATR modules.

A first-generation hybrid-architecture (statistical, model based, and neural

network) ATR system is currently operating on multidimensional (laser radar
range, intensity and passive IR) sensor, synthetic, and hybrid databases to
provide performance and validation results. A recent study determined the
sensor requirements necessary for target classification and identification of eight
vehicles under various view aspects, resolutions, and signal strengths.

This article presents a description of the infrared airborne radar used to
gather sensor data, a discussion of sensor fusion and the hybrid ATR measure-
ment system, and a review of the ATR evaluaticn facility. This article also
discusses the computer manipulation and generation of laser-radar and passive-
IR sensor imagery and the processing modules used for target detection and
recognition. We give results of processing real and synthetic imagery with the
ATR system, with an emphasis on interpreting results with respect to sensor

design.

HE BATTLEFIELD SCENARIO continues to grow to process their data, and the manner in which they

in complexity as the use of high-resolution are evaluated is necessary to determine their suitabil-
sensors and precision strike weapons has forced ity for military applicatiorns.

the increased use of concealment and camouflage tech- Unfortunately, the testing and acceptance of ATR
nology to improve vehicle survivability. The advent of systems for military applications has proven elusive.
multidimensional sensors that trade individual sensor On one hand, many researchers are concerned that
performance for aggregate system performance and not enough information exists in one sensor modality
automatic target recognition (ATR) systems that can to build an ATR system that performs effectively
assist in or automatically identify targets also are a against targets in natural and man-made clutter. On
threat to vehicle survivability. The understanding of the other hand, the use of multisensor infirmation to
multidimensional sensors, the algorithms that are used solve this vexing problem is relatively recent, and the
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results are limited. Although we have strong indica- ronment for ATR systems. The Inputs to the facility,

tions that several sensor modalities are better than one which is a high-pcrformance computer graphics work-
for target identification, no convincing database of station and data-processing engine, are very high-

evidence exists. resolution data ( 15 cm in 3-1)) taken with pixel regis-
At Lincoln Laboratory we have constructed a fly- tration in the modalities of interest (lasLr range,

able multiscnsor measurement system to evaluate the intensity passive IR, and visible) and stored in data-
use of single and multiple sensor modalities for searsch- bases. An electronic terrain board (ETB) combines
and-identification applications. This article describes the databases with sensor and target models to modify
the measurement s),ztem, which ;',:ludes a forward- the measured imagery for ATR sensitivity analyses.
looking suite of sensors, a down-looking suite of sen-

sors, and an MMW sensor. We also describe an ATR The Infrared Airborne Radar
system for processing laser radar range and intensity The Infrared Airborne Radar (IRAR) . a ilable
imagery as well as othcr sens( r modalities. multiscnsor measurement system that consists of a set

Testing the AIR system to quantify the perfor- of active and passive infrared (IR) and active millime-
mance limits of the muLtisensor mcasurement system ter-wave (MMW) sensors. T[his system is installed in
is an important step in the development of useful a Gulfstream G-I twin turboprop test aircraft used by
benchmarks and the definition of radar requirements. Lincoln Laboratory: Figure 1 illustrates the locations
This article examines the performance tests we have of these sensors in the aircraft. We are especially inter-

developed and provides a summary of test results for csted in the ability of the multisensor measurement
spatial extent, image quality, and 3-D) recognition system to detect targets autonomously (i.e., without
requirements. An AFR evaluation facility is currently human interaction with the measurement system).
under development to provide an effective test cnvi- lin the forward-looking sensor suite, the active laser

Sensor control panels Forward-looking radar
10 ` pjm active laser radar
8-to-12-pm passive IR

85.5-GHz MMW radar

Recording system If

Video Down-looking radar
10.6-pm active laser radar
8-to-12-pm passive IR
0.8-pm active laser radar

FIGURE 1. Schematic diagram of the multisensor measurement system on the Gulfstream G-1
aircraft, showing the location of each individual sensor system. The two sensor suites-forward-
looking and down-looking-are located in the aft section of the aircraft, the recording system and
electronic racks are located in the midsection, and the antenna for the MMW radar is located in the
nose. The forward-looking sensor suite is mounted on an optical table and then relayed through a
pod on the fuselage. The down-looking sensor suite is housed entirely in the pod aft of the torward-
looking sensor system.
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radar sensor measures absolute range with a precision element arravs of Hg( dl'e photw, ltai, detectors:
of' I ifl while the passive-IR, sensor meaisurcs the ther- one array for the active Measurements and )nle for the
neal intensity of the target and scene in the 8-to- 12- passive measurements. Registration of the acti\c and
pmn band. I'he down-looking sensor suite, which is a passive measturcemets is alw a's assured because both
multhispcctral active-passive sensor, has the abilh tv to arrays share the cominmon telescope.
Measure relative range with a precision of 1 cm, as In the present configuration, the two arrays are

well as the ability to) mcasur," passivc-IR thermal in- oriented vertically to piovide a 10' adimuthal cover-
tensity. In addition, an MMW real-aperture measure- ate at 2.5 scans/sec in lincscan mode. In a separate
ment system developed by General Dynamics of framing mode (25.6 tirad by 12.0 m'ad), the scan-

Plomona, (California, is installed in the aircraft. This ning mirrors operate at 20 frimcs/sec: whem: the pas-
MMW sensor measures absohltc range with a rcsolu- sivc channel is enabled, however, the recording rate is

troll otf0.5 in, and is slaved to cover the same search reduccw ,o 10 frames/scc becaise of recorder Imliita-
area as the forward-looking sensor. tions. klevision Imnages from the 0orcsighted TV cain-

All the IRAR sensors reside on board the aircraft era are digitized and stored on computcr tapes. 'Lible
platform. The heart of thle IRAR system is located in 1 shows selected system parameters for the forward-

the center section of the aircraft. A radome extends looking sensor.
down f'rom the center of the aircraft, allowing the Figure 2 is an example of a laser radar range image
laser beam of' the ftorward-looking sensor to exit an1d a passivc-IR image made simultancoush' by thle

through a gcrn riUm window onl the left side of the f'orward-looking sensor. Tl'wo f'eaturcs in these images
radomc. An additional window immediately to the arc particularly interesting with respect to data f'usion
right Of" the germanium window is used by' the Inca- and scene understanding: (1) the road that traverses
surement system's boresighted color television cam- vertically in the center of the scene is clcarly visible in
era, which is used ro point the laser beam manually the passive-IR image in Figure 2(b) but Invisible in

and to record a live sequence of the measured scene, the range image in Figure 2(a) because the road is at
The rado(me was modified so that the down-look- the same elevation as the local ground plane, and (2)

ing sensor could be placed immediately behind the although a tank (at the center lcf't of the scene) has a
forward-looking laser-radar pointing-mirror _ssevibly negative passive-IR contrast with the background, it
and look straight dovwn; the scan direction of the has positive ringe contrast in the active laser radar
down-looking sensor is therefore always perpendicu- image. We call overcome the measurement limita-
lar to the longitudinal axis of the aircraft. T'lhe M MW

system is sufficiently small so that the I-ft diameter
radar dish and the gimbal mount are totally cnclosed Table 1. Forward-Looking Laser Radar
within the nose cone of the aircraft. System Parameters

I-'rward-l.ook1*n L.ase'r Radar

The transmitter in the f'orward-hlooking sensor is an CO 2 laser
RF-cxcitcd, water-cooled, CO, wavcguid(" laser opcr- Wavelenoth 10.6 lm
aring at 10.6 !mr. In the pulsed mode, the transmitter

laser provides a nominal 25-nscc pulsewidth at ap-
proximately 3-W average power at a pulse-repetition Pulsed, average 3 W
frequency of 20 kHz. In (CW operation, the I'•ser can Number of detecto;a 12

provide power in excess of 30 W.
A 5-in diameter, afocal, Ritchiy-Chreticn telescope Telescope aperture 13cm

functions both as the transmit and receive apertt i of Instantaneous field of view 0.2 mrad

the sensor to produce a 200-!irad diameter beam Range sampling interval 1.1 m
I 00-!rad resolution). The sensor uses two linear 12-
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(a)

FIGURE 2. (a) Passive-I R imiagery and (b) laser radlar range imiagery taken sMimltaneou~sly alk Stockbridge. Nevw
Yor k. b~y the forwardl-looking sensor. The passive-I R 'miage inl part a is coded b~y thermial Intensity. so that
vwarniei ob)jects suIch as vehiri les are brighter than cold ob~jects. The range imiage Iin part b is codlec f)y color to
distin1guish objects at different distances fromi the viewer.
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FIGURE 3. (a) Passive-FR imagery and (b) boresighted MMW radar imagery. The MMW radar data are
displayed as a 3-D plot of down-range. cross-range, anld thermal-intensity values. The three logging
trucks indicated by boxes in the passive-IR image correspond to tour of the five highest MMW radar
intensity pealks. Part Lshows two peaks for the one truck in the center of part a because distinct returns

were obtained from both the truck cab anld the truck bed.
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image of the camouflaged truck from a viewpoint
Table 3. Down-Looking Laser Radar that is just above the road. In this way, a down-

System Parameters looking view can be used to develop or test algo-

rithms for a forward-looking or near-forward-looking

Angular resolution 0.5 mrad, x and y axes sensor through the use of coordinate transformations.
A more detailed description of how down-looking

Range precision 15cm data can be utilized for a variety of ATR evaluation

Range ambiguity interval 10 m tasks is given in the section entitled "The ATR Evalu-

Altitude range 400 ft to 1300 ft ation Facility."

Ground coverage 2000 ft at 1000 ft Sensor Fusion

Figure 3 illustrates the possible benefits of fusing
MMW radar imagery and passive-IR imagery. This

by netting and pa.rked on a dirt road in a forest. figure demonstrates that the MMW radar image can
Figure 5(b), which is the down-looking range image, be used to indicate areas of interest in a coregistered
clearly shows the road and the truck, with the height passive-IR image. Other techniques that incorporate
of the truck above the road encoded in color. Figure the detection lists from both sensors usually fuse the

5(c) is a computer-trainsformed forward-looking range lists by an OR or AND procedure; i.e., the target

0.8-pm laser radar 10.6-pm laser radar

, Intensity

8-to-12-pm passive IR

FIGURE 4. Example of imagery produced by the multispectral active-passive down-looking sensor during a flyover of the
USS Connole. This sensor produces coregistered laser radar range and laser intensity images for wavelengths of 0.8 lim
and 10.6 im, as well as an 8-to-12-pm passive-IR thermal-intensity image. Note the parked helicopter near the stern of the
ship in each of the sensor domains as well as the depiction of the ship's wake.
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(a)(b) (C)

FIGURE 5. (a) Opti(a 11 rcaunra~plr of a truck covered \vitl camlou~flage netting onl a road in a forest. (b) Tlik. :-Iativo tannet

11rnaqe of itho tT ii I, as dlto'rri'd I), tre rooltispectral down-looking sensor. (c) Thre 3-D spotial transformed ;man''
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each column, which corresponds to a particular cross- bin. In this way, a three-dimensional histogram (cross-
range value that uses both the range image to provide range, range, passive-IR intensity) is created, as shown
the coordinates tfr the histogram and the pixel-regis- in Figure 6(c). Peaks in the histogram indicate objects
terd passive-IR image fir the intensity values. An with vertical extent (i.e., trees, buildings, and ye-
azimuth value is selected, and then we scan the range hides) and with sufficient thermal contrast with re-
image pixel by pixel along that azimuth column, where spect to the background (i.e., running engines, heated
the range value for each pixel selects the histogram buildings).
range bin. The corresponding passive-IR intensity This calculation is written as
value in Figure 6(b) is then added to that histogram

HR,(az, rng) = P(az, el) x U(az, el),

Range image

where U(az, el) is as defined previously and P(az, el)
g is its processed passive-IR intensity. Peaks in the range-

"passive histogram indicate regions of vertical extent
U.1 -- that have positive thermal contrast.

Figure 7 shows how the range-passive histogram
Azimuth algorithm was applied to an IRAR linescan scene

1 = 1.2 km range (a) taken at Fort Devens, Massachusetts. The linescan

scene contains the passive-IR image and laser radar
Passive-IR image range image of three trucks and a motor generator set.

,- The vehicles were not in operation; their thermal
.o -signature is due entirely to solar heating. Figure 8
- - shown the resulting range-passive histogram. The three

L - -. largest peaks correspond to the three trucks in the

Azimuth scene. For each peak, the truck position is now local-
(b) ized in cross-range and down-range. This example

clearly shows the value of fusing multiple sensor do-
mains at the pixel level with an AND operation,

Rangelpassive-IR histogram which improves the probability of detection and low-1Lers the probability of false alarms.

S 'IIIII- -.- - Theoretical Study ofActive-Passive Detection

- - - of Multipixel Targets

Research into the development of a quasi-optimal,
1.2 km Cross range (:ri single-sensor detection processor for multipixel laser

(c) radar was done by M. Mark [21 and resulted in the

FIGURE 6. Schematic diagram of how the range image and generation of receiver operating-characteristic curves

passive-IR image are mapped into a range-passive-IR his- for this processor. Mark used a generalized-likelihood
togram. (a) An azimuth value is selected, and the range ratio test to estimate unknown parameters for a maxi-
image is scanned pixel by pixel along that azimuth column; mum-likelihood estimate. Computer simulations with
the range value for each pixel selects the histogram range benign synthetic scenes, generated with uniform laser
bin. (b) The passive-IR intensity valuefromthe correspond- intensity, range, and passive-IR values for target and
ing passive-IR image column is then added to the histo-
gram bin. (c) In this way a three-dimensional range-pas- background, were used to provide performance mea-

sive-IR histogram (cross-range, range, passive-IR inten- sures. Recent extensions of this work to multiple sen-
sity) is created. sor modalities (laser radar range and laser intensity,
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(a)

(b)

FIGURE 7. A scene containing three trucks and a motor generator as imiaged by (a) the
passive-JR sensor arid (b) the laser radar range sensor in the forward-looking sensor suite.
The trucks and generator are clearly visible in the center of the passive-IR image. The laser
radar range image depicts the objects as silhouettes standing out of the sloping terrain arid
in the samie location as in~ the passive-JR image.

passivec-I R thiernmal lintensitY) were acconipli shed bY
S. H annon01 and J. Shiapi ro 13]. Th le results of these
Conipureltr siniuilations. which were later confirm'ed byv

experimecntal data, indicate that for a specified operat-
ring power such as thle probability of deteLct*l ionad (11e

probability of' failse alariii, the reL1uireCd Sen1sor_ S10gnal-

to-iioiSe ratios were relaxedI for al mlUltisensor1 rnea1-

SUrernenit sv'stern (wer a singwle sen N)U sv-stenli.

[ig"u t 9 deC)Ji; t lie SetISOr/tart-Oct requti renments f-or-

a I1O-pixel target (2 pixels by 5 pi)xels) onl a 1 01)0-pixel

MIMage (20 pixels byv SO pixels). The target SueC can be

scaled to simiulate a tan k-si/ed wli ide at a1 diStan~ce Of

a1pproxiniately 5 kml w~ith a sensor field of view (givenl

a1 W~ depression angle) of' 1 5,000 ni-. lFigrc () indi-

catecs the sensor requiremntcns l'or dtectcting, 99"o of

taIlk-si,'ed eIcl es at 5 kin withi a fhllse-alarrn rate of"

1 0 ;, or of' 0. 1 kill 2. Because thle si ni ulat oils wr

done onl ideal ted scenes. however, the results, are not
FIGURE 8. The result Of processing the data in Figure 7 directly transferabJle1 to a1 speci~fic senSOr deSign, Tle
with the range-passive-IR histogram. The dlown-range val- trnssilidcteardcinfrci e asv-

Lies are color coded in the same marnter as the laser radar trnssitnal-to ndisecatiei a redcton laser radar carrier-to-

rarnge image in Figure 7. The four highest peaks corre- Z'
sponcl to thle three trucks ini the scene. These peaks Would noise ratilos ( N R) When1 al Com1bi1111 0at IWO (ftoSell-

Cue a classification processor to a region of interest. sorts is emiployed.
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Sensor/target requirements construet the most probable input image that would
Probability of false alarm = 10-3 produce the measured sensor image. This rCconsIrtri-Probability of detection = .99

10.0 ti0n clarifies the image aptcarancc, Ind makes, tc

" Passive only returns from the various objects in the scene appear
, 7.0 more COntinuous and complete by rcing sensor

X- * and scene artitacts such as dropouts and anomalies.

z Next, the enhanced image is processed by the de-
E tection stage to identify correctly sized rcgions of

SRange only -ct tge(

constant range as potential targets. l'he detcttion stage
.• /,4 extracts these regions from background clutter

Passive/ I ge/ and removes the ground plane. The detected target at
a.Intensity tie ouput of this stage is a silhouctte consisting of

4.0 12.0 15.0 multiple fragments and rough boundaries.

Active system (CNR in dB) The multiple fragments are combined by the scg-
trnctation stage into a complete, smooth, filled sil-

FIGURE 9. Sensor/target requirements for multipixel tar- hotette. The completed silhouctte is then separated
get detection using the generalized likelihood ratio test for by the [cature extraction stage into feature regions
single and multiple sensor modalities to detect a tank-size
target at 5 km with a probability of detection of 0.99 and a (e.g., barrel, turret, body, and tread for a tank). For

false-alarm rate of 10e per image or 0.1 km-' 131. A 7-db this article, the entire target silhouette is considered
SNR is required for a passive-only sensor system, and a the single feature. The silhouette is then mapped by
12-dB CNR is required for a laser radar range-only sensor the invariant-mapping stage into an abstract pattern
system. The SNR and CNR requirements are relaxed for a that is invariant to translation, rotation, and scale
combined passive-range sensor system ora passive-range- within tie sensor fiel of view. This invariant pattern
intensity sensor system.

is processed by the classification stage, which initially
learnis to cluster the invariant maps into groups and

thIein, after the training cycle, classifies the inptut data
Hybrid ATR System with respect to its learned categories.
We have developed AT'R processing modules for the
primary sensor grotips described previously; these limage Cleanup

grotips are laser radar intensity, range, passivc-IR ther- To provide adequate recognition performance iln a
real intensity, and MMW. Although the individual noisy cnvironment, the cleanup stage must be capable
processing modules can vary among sensor groups, of using prior knowledge to restore measured images.
the general processing structure has the same sequence We present here all illlage-restoration model that quan-
of stages: clcanup, detection, segmentation, feature titatively incorporates prior knowledge of the ica-
extraction, invariant mapping, and classification. The surement process and scene. The model is based oil a

general ATR system was originally developed to opcr- Baycsian formulation using Markov random fields, as
late on laser radar range and intensity imagery, and the introduced by S. Geman and I). (jeman [4]. The
results presented in this article arc based on this imnag- processing is massively parallel because the Markov-
cry. Figure 10 illustrates tile processing modules for randomn-ficld assumption allows the image to be
tile rangc-imagcry recognition system; this system is decouplcd into a large number of connected local
described in more detail below, neighborhoods, each of which can be processed inde-

pendently. The local-neighbor intformation is spread
Modi arAT&RSystem Concept out in time stich that a global image restoration is

The tianaibiguotis range image is first processed by cffccted when the itlage-restoration system reaches a

the cleanup stage to reduce data anomalies and cn- steady state.
hance the image. The cleanup stage attempts to re- Real-time image restoration is possible by using
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Cleanup

. Segmentation

FIGURENIF 10. The six processing modules of the range imagery-recognition system: cleanup of

sensor artifacts, detection of potential targets, segmenting targets to improve image characteris-

tics, extraction of relevant features, invariant mapping of features to remove translation and rotation

effects, and the classification of features into target categories.

the model with a massively parallel single-instruction spans the entire range of possible pixel values. Except
multiple-data (SIMD) computer such as the Connec- for a few discrepancies at the boundary, the restora-

tion Machine or a direct hardware implementation tion shown in Figure 1 1 (c) is nearly perfect, especially
on a custom microprocessor. A more detailed descrip- the recovery of the sloping background.

tion of the image-clcaiup process is given in this issue

in the article by Murali M. Menon entitled "An Effi- idrgt Detection

cient MRF Image-Restoration "Ichnique Using Dc- The detection stage of the ATR processing system
terministic Scale-Based Optimization." extracts target-like regions from the enhanced range

We applied the image-cleanup process to a simple image produced in the cleanup stage. The process
synthetic image corrupted with noise according to a occurs in three phases: (1) regions of interest are
measurement model described in the literature [3]. selected, (2) target-like objects are detected, and (3)
The noise does not have a Gaussian distribution and objects are extracted from the scene. Regions of'inter-
is based oi realistic sensor measurements. The origi- est arc located by using range-onlyassiv-

nal noise-free synthetic image has a simple geometric IR histograms, as previously described in the article.
shape at a constant pixel value, with a background The peaks of these histograms indicate regions of
that linearly increases in pixel value from the top of significant vertical extent (i.e., constant range with

the image to the bottom. Figure I I(a) shows the varying elevation), or a significant thermal signature
uncorruptcd image, while Figure I I(b) shows the with some vertical extent. The selected regions are

image with 70(o of the pixels corrupted with noise, searched for areas of constant range that have range
The original image has 256 gray levels, and the noise contrast with their neighbors and are similar in size

12
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FIGURE 12. (a) The inlitial range Image of an M48tank; (b) the subseqo~ent detection resniLt that was
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differences, or edges, within an image at a number of 13). The compressed image is then filled to foirm a
different orientations. This filter models the orienta- completed and smoothed silhouette of the potential
tion-selective cells discovered by D. Hubel and T target for classification. The specific filled image shown

Wiesel [61 in the human visual system. These ori- in the lower right of Figure 13 is the result of using
ented edge strengths are then allowed to compete and the summing method for compressing the results of
cooperate with one another in the CC loop to gener- the CC loop.
ate the perceived boundary contours.

The four layers of the CC loop consist of two Feature Extraction
competitive layers, one cooperative layer, and a feed- In general, the filled and smoothed image provided
back layer. The first competitive layer thins and sharp- by the segmentation stage of the ATR system is then
ens boundaries within the image by allowing compe- used to extract relevant features for cklssification. Many
tition for dominance in the final boundary different feature domain, mages or vectors) such as
segmentation between neighboring edge strengths of image geometry, object r ', fractal dimensions, dis-
the same orientation. The second competitive layer tance of hot spots from the central locations, and the
straightens jagged or noisy boundaries by allowing Hough transform can be used and are part of on-
competition between edge-contrast strengths with dif- going research.
fering orieatations at the same location. The coopera- In particular, model-based systems have been de-
tive layer completes and connects boundaries by al- veloped at Lincoln Laboratory to parse images into
lowing edges of like orientation to cooperate over a geometric features (such as circles, squares, rectangles)
distance in the image. The feedback layer introduces and subsequently classify those features into target
into the system any new boundaries formed by the features (such as barrel, hull, turret). These model-
cooperative layer. based systems are discussed in the article by J. Verly et

The OC filter is implemented by convolving a set al. entitled "Machine Intelligence Technology for Au-
of orientationally tuned digital filters with the input tomatic Target Recognition" [10]. The use of model-
image. The CC loop is modeled by using a set of four based systems for feature extraction in this ATR sys-
coupled nonlinear differential equations for each ori- tem has been evaluated previously by D. Dudgeon et
entation and location within an image. Input to the al. [11], and they are not discussed further in this
CC loop is static; therefore, the boundary is com- article. For our purposes, the pixel image provided
plete when the system of differential equations is in by the segmentation stage is used as the feature for
equilibrium, classification.

The BCS algorithm has been previously applied to
laser radar imagery as reported by Kolodzy et al. [7] invariance Mapping
and by E. Van Allen [8, 9]. Figure 13 shows an The segmented silhouette is spatially mapped to elimi-
example of BCS processing on the range image of an nate translation, rotation, and scale variations prior to
M48 tank. The input range silhouette in the upper classification. An invariant silhouette is therefore built
left of the figure is the input to the segmentation directly into the classifier memory to form a single
stage. The range-silhouette image is sampled to ob- compact representation for the target. This invariance
tain the oriented contrast strengths by using the OC reduces the number of stored patterns from one pat-
filter in each of twelve orientations. These oriented tern for each of several terrain angles and ranges to a
contrast strengths are then processed by the CC loop single stored pattern, which reduces memory require-
to produce twelve new images, which are compressed ments and search times and improves efficiency. In-
into a single image by using one of two methods: (1) variance can be obtained by using the following pro-
compute the maximum contrast strength of any ori- cess: (1) locate the segmented silhouette in the field of
entation at each pixel location (upper right of Figure view, (2) detect the silhouette edges, and (3) spatially
13), or (2) sum the contrast strengths across all the map the silhouette edges. The resultant abstract pat-
orientations at each pixel location (lower left of Figure tern has the desired invariance and is processed di-



* kol Bit/

FIGURE 13. Sew"rnentatrOnl of a laser radar image of anl M48 tank Vwitir tire' frOLJnI(IIaY COrtOWi ,ýstenm (B3CS)
hioV. Irrl(; sirreetirec O I lroiiria is and c o nrrected seqrrrerts, Tlire, image i nthe rImer left Is the origina111 '(( li seor Ir'tmI

Irg si~lrijtto. TIre' result Of appllyling tire BCS uISIrrg( tire lýM irr lirrrr-eorrItlrast e'dqe-strerrqtir irretird is sire.. rr1

tilte rIrprer 11irt ar1rd tirerslt' Lisirrg tire' Sturrrrrred-rCertrast edgje-strirtlriIt method ~ irec iroý irr tihe erleft Thin

snririrrd -contrast e'drje-sttrerrgthir rsult kwas their' filled atrru is, sirou'. Irll tire' 10k-er rgirt.

IkkI % I)\ i111k, ktNI1c Ill (Ilk re. tl.\ q'~.t ilrr(114 .I lkr Itie r M 111 kr ~ IIt~~u~ lik 1 tI 111 1 t ilk \\~.IN Ni1t

I Ik t 'ir 1et i klikrret IN i kt I ll [Ik tire 11k (lir t tof ie ftrri ,rr~ iie 1)\ l Imir ito r r irt1IL IltiIx fil

or ' ;j!;0!,4 of It, pilei Irterlixlioe. I Ire.lrk o ofIII)k 0 ire irek I ptr rl.rr"1111 rppirrc 1111m )e(1r1 ie rire rr

xplrlr rrlppllrrc. dim(tniO\x \ ie\\. Ie folk. il errm rIxdi or) tilt, \\Olx 1, 1 io.p'Ihe

-I Irk &ki.Lu- iuklcl.LIomn .r1"Ildmr (in rIxex 'orrti1t x k x~irxo tmold.. lx x11iroIlirluk it ire1 p'dli rrrIuIprrrn:t ix

W rrlk Il Ik ~ - ~r \ lii. it rrI k 1rplnrI Ill [I.l iml~o m ir u Ir.nii rr ri kr ir ir \ 1)\ Ji lik-I r dr

IIIr, ~~-n IW d lk ' .ul r ;hc-i ix I ii. nn .I ku torxiu ti rIk. \i i r x1.1 AN dkir, 11, h\\ I i ri r iri k

ik (t. \m k 1, irk rrr 1(itnm .1\kx, Il ItIre eil 1 , i.1i 1S k" rtiI"k I Ire mmn ], r,I,, rrt.1pprirtn: nr.rrrxfmmt I rrtx in kin( lIk

6ýIdeNi .1r, )1irrtur W i r' I J rtIT lr\ Jx 1\\ i e k k 1(,I Irc oI N ti u ix lo, te eI ( trrL ol1114 Ilkk'to Jn 1041 in I lliru. J) Il m wii .i1,11.ii

11 1iI.in,, 1nu~ xlru-ri"t1r 1, .1 111i 1, 1 m lt lit m Iti-rrt.11t(illr. rileo S\xt rrr I llI\ i I Iruk li t Iuttm ini ni tir xIl rmmii rr141k ,

I Irk ,IlirpI it ur1 ý-r ýIr p~i\,I Ilrl i (I k -ik rtuk k I 1 ' l~i reN Ik Ix IN ri- irk muirr I ). rkrrI r ru n111c 11 " l ow 11imr

iii r, it (Ilk rk 11 11r o r 1 ir in ux r I'M k Ilkln t mit r .r rt k~ru Ir I I IN r11`0 1",i x ri~ irr. i .11 Ik rllr .i1 in.

o ri .1 Jl p \kl1. I~ l' iiix (kn~ 1iL Letmr Li rekihti 1it I lk m p d1mmli rr ~ ~1riin dlk~ rr lttn1lr\ 1, 1rx1!r1\

1 m1 Itii r i ir rifnirrN.irimuir.i1 il t, 1ir ,1r\r . tI -II, 1( unimr rr t W , I n11 14I 1 ( m iri1mmri ml klr 11rrrnin . I. r I l ' !-,

I I i t, , I I ), r kx 1 ( i t mr 1. 1 rI J ' r.it ir.~ x .i k 1rr [11 J Xi .1 1k I'i r I I 1 1 1.11 J n i In 1r 1 r1 Inn \ \x ,r 1. 1 . .I 1 ~



KOLODZY
,Iftltidnme'3ional Autonatt Tlarget Re ognition Syrepn Lvaluadtltn

Table 4. Invariant Mapping of Silhouette Edge Strengths for Translation, Rotation,
and Scale Invariance in the Sensor Field of View

Translation Pixel centroid locates origin for

mapping log radius and polar angle

Polar angle

Rotation Rotation in field of view is mapped

to shift in polar angle 0

Polar angle

Scale Scale (or range) is mapped to

shift in log radius

centroid calculation and log-polar mapping to have Grossberg [14] defines a class of unsupervised neural
robust behavior, network classifiers that cluster an N-dimensional in-

The log-polar mapping around the centroid of the put vector into a finite number of stable categories.
target maps rotation in the field of view to a shift in This clustering is a necessity if large training sets are
polar angle, while it maps range to the target as a shift to be used.
in log radius. This mapping is insensitive to rotation Supervised networks and/or model-based systems
and scale variations; cross-correlation with an un- require exact knowledge of the target, or ground truth,
rotated, unscaled log-polar mapping gives an estimate for each exemplar. For most large systems, thousands
of the amount of rotation and scaling present in the (or millions) of training frames would need to be
detected silhouette, ground truthed, which is a daunting if not impracti-

Another method for making the log-polar map- cal task. The ART-2 network, which is illustrated in
ping invariant to rotation and scale in the field of Figure 14, is basically a two-level correlation classifier;
view is to calculate the magnitude of its Fourier trans- this algorithm has been discussed by R. Lippmann
form. The sh.!'t property of the Fourier transform [15] and Menon and Kolodzv [16] to be similar to
eliminates the rotation and scaling shifts of the log- the K-means clustering algorithm.
polar mapping by treating the mapping as a periodic The ART-2 network is different from early ART
function, as reported for laser radar range imagery by structures because it is designed to classif, analog,
Kolodzy et al. [7]. While this method has merit, it rather than binary, input patterns [17]. This analog
will not be discussed further here; it is the subject of capability requires a robust structure that pays strict
other research [13]. attention to memory stability. The ART-2 network

classifies and stores patterns in the following manner.
classification The first layer (F l) normalizes the input with respect
In the final stage of the ATR system, a neural network to the feedback signal from the second layer (F2),
is used to classify the abstract invariant maps into becoming a short-term memory (STM) trace. This trace
potential target categories. The adaptive resonance activates nodes in the second layer proportional to the
theory (ART) developed by G. Carpenter and S. magnitude of its correlation with the corresponding
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FIGURE 14. Processing diagram of the ART-2 neural network. The input
image is presented and stabilized by the node-level processing in the F1
layer; the result is then correlated with stored long-term memory (LTM)

patterns in the F2 layer. If the resultant correlation is not large enough
with respect to the vigilance parameter, a reset signal is propagated as

feedback down to the F1 layer. If none of the LTM patterns are sufficient,
thei, n new LTM pattern is formed.

stored memory patterns, or loNg-term memoiy (ITM) an individual target is provided a label unique to that

traces. If the degree of match between the normalized target. Multiple [TM traces for an individual target
input STM trace and the LTM trace associated with are formed because of either diff'rent views or statisti-

the milost highly activated node in F2 passes a vigi- cal variability of the target. For example, a tank at a
lance parameter, the STM trace in FI is learned onto head-on perspective looks different from a tank at a
the FI'M trace, thus storing the differences between broadside perspective, and thus would form two dilL

these memory traces. Should a mismatch occur, a ferent categories. Also, at a low SNR the signal could
reset signal causes the input pattern to select another change significantly enough to cause the classifier to

LFM category. If no existing [TM category can be form a new category if it is presented with a ne%\ noise
found that matches the input pattern, a new category structure.
is created, which illustrates the ability of the ART-2

network to respond to a novel signal. Generally, simi- Interpretation of Results
lar patterns are categorized together because of high The performance of an AIR system can be indicattd
interpattern correlation, and these patterns continu- either by the score of each individual processing nmod-

ally activate the same category node in F2. tile or by the overall system score. This article uses the
The final step of the classifier training is to associ- overall system score as a recasture of results, with a

ate target labels with LTM traces. Each LTM trace for higher concentration on the capabilities of the classi-

13 2 '- !, t/ ,L, fa l] (;R t W I ,' % JB " q



- KOLOI)!
.•Itdtlrhm,.ow,/,l r . 1,1t, [ al,,,il R,' ..Q rw s) ., m 1 1,dl, Mu , :.1

tier. For supervised classifiers, the perfornIance is LOnR

MOenly measured by the number of correct responses
of the system when it is given a test set of input We have investigated the ability of this ATR sv stcm to
images. The X[R system piesented here incorporates classify laser radar range imagery of Xvarious niil*,arv
an unsuperviscd classifier, which uses a larger variety targets corrcctlh. This systemn has been tested on a
of performance measures. This artick uses a scoring limited amount of imagerN obtained with ground-
method based on the number and population distri- based ,,nsors built by the )pro-Radar S\'stem group

bution of categories created by the classific: daring at Lincoln laboratorv. The results of these tests arc
training. presented below.

Unsupervised classifiers are generally clustering al- The full capabilities (and deficiencies) of an AIR
gorithmis that group input feature vectors into a finite system, howes %r, must also be determined, and this
number of categories. A user-defined distance metric determination is possible only through exhaustive test-
is used to determine whether an input vector is to be ing requiring large amounts (f sensor data. Mianv
clustered, or matc/hed, wvith an existing catce,'Iy. he conditions can be tested to determine the capabilities

number of categories produced (given a specific train- of the AIR system; we used three conditions: (1
ing set) indicates the ability of the classifier to gencal- CNR, (2) out-tf-tolane rotation, and (3) number of
ize. A classifier responding with more than one cat- pixels on target. Unfortunately, the amo.nnt of sensor
cgory for an object is not unreasoiable if the features data required to test these three conditions thoroughly
the A'I+R is extracting change significantly. For the by using real sensor data is prohibitive in both time
ATR system presented here, this change in features and cost. The use of synthetic imagery to place bounds
occurs for the log-polar map when the vehicles are on system capabilities is the logical alternative.
rotated out of plane. A classifier that requires only a Synthetic laser radar range target imag,:rv was gen-
few categories to p,:rform recognition is desirable. crated by uIsing Environmental Research Institute of

Two measures of a classifier's ability to generalize Michigan (ERIM) wire-frame models of a variety of
are currently being used: (0) the number of categories military and non-military vehicles. Background im-
required for a given training set, and (2) the number agery was generated by using a flat ground plane
of populated categories formed for the s:,ie training projected with the attack angle of the sensor. Perfect
set. The differences between these twi, ,tieasures are object extraction from tne ground plane was assumed
found in the interpretation of sparsely populated clIs- for this study. Sensor statistics (e.g., noise) were added
ters or categories. For example, if 100 inputs produces by using th, laser radar range and intensity models
five categories populated by 95, 2, 1, 1, and I cx- developed by I Shapiro et al. [18, 3 , 41. '[his proce-
amples, respectively, then either five separate catego- dure was used to generate targets for the three test
ries or one single category with five incorrect re- conditions listed above.
sponses are necessary.sponss arenecesary. round-Based Sensor Data and Results

The trade-offs of these measures are identical to
those for fielded ATR systems: performance versus In 1981 at Camp Edwards, Massachusetts, the Opro-
hardware requirements. If every vehicle needs to be Radar Systems group recorded a large database of
recognized, then all possible variations, including those laser radar imagery of three vehicles-an M-48 tank,
categories individually populated, or outliers (those an M-1 13 ar:,i,red personnel carrier (APC), and an
variations whose characteristics are rarely viewed), are M-1 10 howitzer. These vehicles were recorded at five
required to be modeled and retained in the ATR orientations with fiv, range backgrounds by using a
system. It is possible, as shown by the 100 input transportable ground-based laser radar sensor that was
examples above, that a significant reduction in the the forerunner of the airborne IRAR system. This
hardware requirements (i.e., memory) of the system ground-based sensoi allowed us to create a versatile
can be obtained by allowing a certain reduction in database for ,esting ATR system performance. Each
recognition capability. of the five background scene, ,_onsisted of sky, r.es,
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Table 5. Classification Results for Three-Target Database of 18 Images

Number of Categories False AR T-2

Formed Alarms Vigilance

BCS filled silhouettes 5 1 0.785

BCS maximum edge strengths 5 0 0.694

BCS summed edge strengths 4 0 0.718

Raw extracted target silhouette 3 2 0.790

or hillside, which we created by changing the location that provided infinite range contrast bet-ween the tar-
of the ground-based sensor relative to the target. get and background. The 1000-m imagery had a

We selected an 18-frame image subset of the Camp hillside background that had almost no range con-
Edwards database and processed this image subset trast because of the high depression angle bemteen the
through the ATR system. This image subset consisted sensor and the target; many pixels in this imagery
of three frames of three targets at 750 m and 1000 m were only one range count different from the target.
in range. The 750-ni imagery had a sky background The detection algorithm of the ATR system lo-

FIGURE 15. Classification of laser radar range imagery into stable recognition categories by using the ART-2
neural network. The range silhouette is shown for three input images-a tank, armored personnel carrier
(APC), and howitzer-followed by the resultant image from the segmentation stage. The edge image is then
computed, followed by the result of the log-polar mapping. The right side of the figure shows the three LTM
patterns with a red box outlining the matched LTM category for the corresponding input. Note that the LTM
patterns are not identical to the input log-polar patterns, because they are an aggregate of all the inputs
classified with an individual LTM.
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cated and extracted 100% of the targets in the test set. classified consistently because the detection stage ei-
This result was not unexpected for the 750-m imag- ther included part of the ground plane or it removed

cry. There was significant range contrast in the scene, part of the target body.

so verticality measurements alone could be used for Figure 15 shows a sample classification result. The

detection and the size filter was not required to ex- images in the left column of the figure are the de-
tract the target. In the 1000-m imagery, however, the tected silhouettes determined by using the range im-

background was often only one range count different agery of a tank, APC, and howitzer from the detec-
from the target, which required the size filter to ex- tion stage of the ATR system. These silhouettes are

tract accurately the region of interest defined as the processed by the segmentation stage, the edge strengths

target. A detection rate of 100% for the 1000-m are computed, and then the edge-strength images are

targets demonstrated the robust behavior of the de- transformed into the log-polar domain, as shown in

tection stage of the ATR system. the next three columns of the figure. The right side of
The ART-2 neural-network classification stage of the figure indicates the three LTM traces created by

the ATR system properly classified 95% of the targets the ATR system after processing the nine 750-m im-
into five stable recognition categories, as listed in age frames. The red-box highlight indicates the LTM

TK1ble 5. Sixteen targets formed four categories (spe- trace with which that particular input image on the

cifically, six tanks, five APCs, three 750-m howitzers left is matched.
and two 1000-mn howitzers), one 1000-m howitzer Classification performance was investigated for a

formed its own category, and one 1000-m APC was set of variations to the baseline ATR system. The

erroneously classified as a tank and counted as a false baseline system uses the edge images computed from

alarm. This performance is acceptable after careful the filled silhouettes produced by the segmentation

examination of the imagery. The tanks and APCs stage as the input to the log-polar map. The filled
formed relatively consistent invariant patterns for clas- silhouettes are produced by using the summed-edge

sification. The detected howitzers, however, were not compression method. The variations investigated were

Table 6. The Effect of CNR on the Number of Categories

Formed for ATR System*

CNR (dB) Percent With Without
Anomalies Image Cleanup Image Cleanup

100 0.0 8 8

35 0.2 8 8

30 0.6 8 17

25 1.9 8 26

19 7.3 8

16 13.9 8

13 25.2 8

10 42.3 8

7 63.1 26

Tests included eight vehicles (jeeps, trucks, armored personnel carriers, and tanks)

both with and without image cleanup.
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the use of the maximum-edge image, the summed- Additional results of tests using a larger database are

edge image, and the edge image computed from the required before we can conclude that summed edge
target silhouette produced by the detection stage. Each strengths should be used exclusively as the input to
of the variations is related to a reduction of processing the log-polar map.
by either eliminating part of or the entire segmenta- Effct of CNR on Synthetic Broadside

tion stage.
We describe the results of these variations to the Target Recognition

baseline system in terms of the number of categories In the first test we evaluated the effect of CNR on the

formed and the number of false alarms (false classifi- recognition of broadside targets. WC peIormed two
cations) produced. The goal is to reduce both the individual experiments to determine the number of
number of categories (i.e., produce better generaliza- categories formed without image cleanup and the
tion of the data) and the number of false alarms. The number of categories formed with image cleanup.

results given in Table 5 indicate that both the maxi- Table 6 shows the results of recognizing eight broad-
mum-edge-strength image and the summed-edge- side vehicles (two jeeps, two trucks, two tanks, and
strength image eliminate the false alarms while the two APCs) that are synthetically generated with a

summed-edge-strength image also reduces the num- sensor of 100-firad angular resolution imaged at a

ber of categories. The target-silhouette image further distance of 750 m.
reduces the number of categories while sacrificing Without image enhancement, a high ART-2 classi-

false-alarm performance. fier vigilance value was required to separate the eight
These preliminary results indicate that the classifi- vehicles. This high value forced the classifier to form

cation results are sensitive to the algorithms used in multiple categories for each vehicle at a CNR value of
the processing stages prior to the classification stage. 30 dB. The same result is obtained when image en-

FIGURE 16. Log-polar maps of tanks and APCs rotated out of plane. The log-polar map of the two tanks are similar
for the broadside and near-broadside views but different for the head-on view. The same similarities and differ-
ences exist between the log-polar maps for the two APCs.
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FIGURE 17. Approximate angular extent of each category for recognition of log-polar maps of eight vehicles with out-of-
plane rotation; the vehicles are (a) two jeeps, (b) two trucks, (c) two tanks, and (d) two APCs. A total of 31 categories are

formed. Each category and its angular extent is depicted by the shaded patterns in the figure. Each vehicle requires only a
single category from the broadside view up to 45' of head on or greater. The majority of the categories are in the last 150 from
near head on to head on because the log-polar maps change the greatest in that region.

hancement is included, in the form of the Bayesian classifier indicates that input to the log-polar maps
preprocessor, at a CNR value of 7 dB. A typical from broadside to 500 of head on arc similar, whereas

operational sensor value of 19 dB at a distance of the maps near head on change radically. Figure 16
1000 m indicates that image cleanup is a necessity. shows the log-polar maps for two tanks and two

For further details of the experiment and results, see APCs at broadside, 500, and head-on orientations.

the report by S. Rak [191. Visually, Figure 16 indicates that more categories are
necessary for the near head-on orientations while only

Out-of-Plane Rotation Recognition a few categories are needed for the near-broadside

A second test was performed to provide insight into orientations.

the number of independent categories necessary to The same test was performed with the eight ve-

distinguish eight vehicles rotated out of plane from hicles rotated from broadside to head on in I' incre-
broadside to head on (a 90' rotation) [20]. When ments, which created 90 inputs per vehicle. The 720

matched filters are used for recognition, we com- aggregate inputs were then used to train the classifier,
monly create filters for every 50 of arc. This test was to which determined that only 31 categories were neccs-

provide experimental evidence for the number of cat- sary to distinguish the eight vehicles at any orienta-

egories necessary for recognition. Again, we used the tion from broadside to head on. Figure 17 indicates
same ATR system with the log-polar maps that we the approximate angular extent of each of the 31

used with the ground-based sensor data. categories. Some vehicles require more categories than

A visual depiction of the information passed to the others. A general trend seen in this figure is that only
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one category is necessary for each vehicle to distin- We performed an experiment with the spatial ex-
guish the vdhicles from broadside to approximately tent of each pixel as the variable; this experiment was
450 of head on. This result agrees with the intuitive identical to the one on the effect of CNR described
understanding we have when viewing the log-polar above. Three broadside vehicles were used (two jeeps
maps. and an APC) for the training, and the number of

pixels in the minimum dimension were varied from
Resolution Requirements and the Johnson Criterion 13 to 23. Figure 18 indicates the number of catego-

A final test of the ATR system is the comparison ries formed as a function of the number of pixels in
between the criteria indicated by J. Johnson [201 and the minimum dimension. For complex vehicle out-
the resolution requirements for recognition and iden- lines such as the jeeps, the classifier performs well up
tification. Johnson's work focused on determining the to 20% greater than the Johnson criterion for identi-
imaging requirements of a sensor to produce a level of ficat'on. For a much simpler vehicle such as the APC,

discrimination and recognition for human observers, the classifier is more robust and can still identify the
The work consisted of psychovisual experiments on vehicle at the Johnson criterion. For more details on
U.S. Army personnel by using image intensifier imag- the methodology and interpretation of results, see the
cry that is similar in quality to passive-IR imagery. report by Rak [19].
The personnel were shown images of various vehicles
at various resolutions and asked to identify the ve- The ATR Evaluation Facility
hides. The Johnson criterion is the number of pixels in Military applications require the use of ATR systems
a vehicle's minimum dimension (usually height) that in both semi-autonomous and autonomous modes
is required for a 50% probability of correctly identify- (in a semi-autonomous mode we believe in the recog-
ing the vehicle, nition capabilities of the ATR system enough for a

user to apply the results, while in autonomous mode
we let the system act on the results on its own). The

15 I e testing and acceptance of ATR systems for these mili-SdJeepi1
tary applications has proven to be difficult. The re-

o 10 sources necessary to provide useful test results are

"usually overburdening. Either we must use large

Jeep 2 amounts of real sensor imagery, sometimes in mul-

"5 5tiple sensor modalities, for each given mission sce-
E nario, or we must use synthetically generated data.= ~APC "
o APThe real sensor imagery requires expensive and time-

0 8 ' 1 consuming efforts to gather the data, while the syn-

(0.6) 13 18 23 thetic imagery places an inherent trust in the validity
(1.0) (1.4) (. pixeof the sensor and target models used to generate theObject height in pixels

(Johnson criteria ratio) synthetic data. The recent development, however, of

FIGURE 18. Johnson-criterion test to indicate the number inexpensive computer graphics workstations and data-

of pixels necessary for identification of a target. In this processing engines has begun to change the emphasis

case the targets are two jeeps and an APC. The numtber of from measurement missions to computer-generated
cumulative categories formed for a set of training patterns data.
at each object height in pixels is shown for object heights We are currently developing an ATR evaluation
from 13 to 23 pixels. The increase in the number of catego- facility (AEF) that exploits the recent developments
ries from the baseline case height of 23 pixels indicates the in computer graphics and data processing to provide
inability of the classifier to generalize the patterns. The

results shown in the figure indicate that the classifier per- a

forms well up to 20% above the Johnson criterion of 13 high-resolution data, an electronic terrain board (ETB)
pixels, as indicated by the dashed line in the figure. that combines sensor data with synthetic targets and
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sensor models, and an ATR system that is under
evaluation. The high-resolution data are taken in the Description oftheAIR Evaluation Fa/jilio'

modalities of interest (laser, passive IR, and visible) The AEF merges existing sensor data in multiple
and stored in databases. The ETB uses the databases modalities with synthetic data from sensor and target
along with the sensor and target models to modify the computer models. Figure 19 shows the conceptual
measured imagery for ATR-system sensitivity analy- flow of information in the AEF. The airborne IRAR
ses. This section describes the facility as well as cur- sensor suite, which is described earlier in this article,
rent rescrch on its devLlopment, collects high-resolution imagery in laser intensity,

Sensor Databases

MMW
Forward-looking laser radar
(intensity, range)
Passive IR

Down-looking laser radar I Sa
(0.8-pm intensity, relative range) Sensor and target models

Down-looking laser radar II
(10.6-pm intensity, relative range)

Passive IR

Cleanup Tactics, site,
sensors

Detection

Segmentation

-- Feature extraction

Invariant maps

Classification

ATR algorithms Electronic terrain board

FIGURE 19. The ATR evaluation facility incorporates the down-looking and forward-looking sensor imagery databases,

sensor and target models, the electronic terrain board (ETB), and the ATR algorithm suite. Image databases and sensor

and target models are fused within the ETB, which allows us to modify target models and vary the measured backgrounds.
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range, passive IR, and MMW in a variety ofwavebands sensor domains to coordinate transformations. As de-
and view aspects. These data are stored in large data- scribed earlier, the ability to transform the range data
bases that are used to refine the synthetic data created and subsequent pixel-registered passive-IR data al-
from sensor and target models. lows the sensor imagery to be used to train and test

The modeling efforts and the databases are merged ATR systems with many viewing aspects. The specific
in the ETB. Most false alarms and missed detections method used for the coordinate transformation can
as well as missed classifications of targets are due to have a dramatic effect both on the requirements for
the variability of background clutter signals. Model- computation and, more importantly, on the quality
based systems and trainable recognition systems are of the resultant image.
developed by using limited target signatures only; Traditionally, Euler angles have been used to repre-
unfortunately, these systems do not develop internal sent coordinate transformations, and these coordinate
models for backgrounds as well. Therefore, we must transformations can be expressed as 3-by-3 rotation
find a way to merge target signatures, which are pre- matrices. Because the computer graphics community
dominantly models, with background clutter, commonly uses rotat-on matrices, most of the special-

It is difficult, however, to model background sig- ized hardware develk:?ed to perform coordinate trans-
nals because of their variable and unpredictable na- formations emp!,,,' this method. This choice has been
ture. The background models are therefore the weak- motivated primarily by the fact that translation and
est link of a completely synthetic sensor image. The scaling as well as rotation can be represented by one
combination of measured background imagery with matrix. The same transformations, however, that can
the more well-defined synthetic target models cir- be performed by a matrix can be performed with
cumvents this problem. fewer operations by using quaternions [21]

An important consideration in the choice between
Terrain Database matrices and quaternions for coordinate transforma-

The down-looking laser radar sensor described earlier tions occurs when we interpolate between two orien-
provides high-resolution range imagery. This imagery tations. Rotation matrices are not well defined for
is a 2/2-D representation of the actual terrain and interpolations, because rotations are carried out by
precludes the existence of speckle noise indicative of three successive rotations about three fixed axes. Be-
intensity images. The 2/2-D imagery contains the cause these successive rotations are not commutative,
range of the first object or part of object that is changing the order of the rotations produces different
interrogated for each pixel. Therefore, any part of an results, which introduces a significant problem known
object at a further range or area occluded is not as gimbal lock. This problem occurs when the interac-
represented in the data. The 21/½-D notation indicates tion of two rotations aligns two of the three rotation
that a full 3-D image is produced, although the way axes and causes a loss in one degree of rotational
we view the scene from above appears as if a blanket freedom. Quaternions are free of this problem be-
were covering the objects in the scene. Only the high- cause the cross-product interaction between succes-
est point of a pixel that is interrogated is recorded; sive rotations is preserved [211. Because of this rota-
any part of an object at a longer range or in an tional stability, the aerospace industry for many years
occluded area is not represented in the data. For has preferred quaternions over matrices defined by
example, a ball in midair viewed from above is repre- Euler angles for spacecraft applications.
sented as a hemisphere on top of a cylinder because Because most computer graphics workstations have
no information is available on the space below the hardware that is specifically designed to implement
ball. Techniques for combining multiple views are matrix transformations, we must continue to main-
being investigated to alleviate this current limitation. tain all viewing parameters in matrix form. The AEF

The down-looking sensor simultaneously measures system is designed to perform all interpolations by
range as well as laser intensity and passive IR. The using quaternions, which are then converted to ma-
existence of 21/2-D range imagery lends each of the trix form for rendering.
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"lo illustrate the use of quaternions for interpolat- sating for unequal rotations 121].
ing rotations we must first define what a quaternion is Figure 20 shows an example of the transformation
and how it is used to perform a rotation. A quater- of down-looking range data into various viewing per-

nion consists of two components-a scalar part and a spectives. Starting with the range data shown in Fig-

vector part. Consider a quaternion q = [s, vi, where s ure 4, the range data are transformed and displayed as
is a scalar, and v is a vector of three elements. In sand-colored video data and synthetically generated

quaternion algebra, addition is defined as laser radar range data in a viewing sequence typical of

a target interrogation. In effect, this series of transfor-
q, + q= [(s' + so), (v + v,)], mations is like an observing eye on a flying carpet; it

begins at a long standoff distance at a high altitude, it
and multiplication is defined as detects a possible target, it dives to a lower altitude,

and it flies along the road to the target. This series of
q lq2 = [(sis' - Vl v,), (s v1 + s, v, + v1 x v)], transformations demonstrates how down-looking im-

agery can be used to train and test an ATR system
where v, • v, is the vector dot product and vI x v, is with many viewing aspects.

the vector cross product.
Before we can define rotations using quaternions Synthetic Laser Radar Irnagery

we need to define the inverse operation An important element in the ETB is the combination

of synthetic imagery and modified sensor imager-.

q = [s, -v], Synthetic imagery is derived from target and back-
Iq ground models applied with the appropriate sensor

statistics. In some cases, actual sensor imagery can be
where modified to degrade the quality of the imagery for

s2 test purposes. Both of these cases provide the addi-
= s' + V V. tional flexibility necessary for ATR evaluation. This

section describes the methodology used in creating or

To rotate a point p we embed it into a quaternion as modifying laser radar imagery.

[O,p]. Rotation is then defined as The statistics describing a monostatic pulsed rang-
ing laser radar employing heterodyne detection are

v' = Rot(v) = qvq-i , described by Hannon and Shapiro [31, and were used
to develop a model for laser radar range data. This

where q and q-1 are unit quaternions. laser radar model requires that we select the range and
One consideration associated with the use of quater- CNR value for every pixel as well as the number of

nions for coordinate transformations is that rotations range bins Q available to the signal processor. The
are performed on the unit four-dimensional hyper- probabilities of an anomaly (equally distributed across

sphere, so that, as a result, simple linear interpolation Q -1 range bins) and for the correct range value are
between two orientations gives unequal rotations given by
through the range of orientation values. The unequal
rotations occur because the great arc of a unit P. = 1-e- ei'R+ i

hypersphere is the spherical equivalent of a line, and

the linear interpolation steps fall on unequal portions and
of the line. These unequal rotations must be compen-
sated for to give a smooth set of intermediate trans- P, = (1 - e-)-1

formations. All of the interpolations between speci-

fied positions are performed by using unit quaternions where P1 , and P1 ,, are the detected intensity prob-
and spherical linear interpolations, and then compen- abilities from the correct range bins and the wrong
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FIGURE 20. Down-looking laser radar data is transformed into a three-dimensional

terrain-map view. (a) Photographic ground truth of a camouflaged truck, (b) down-
looking laser radar imiage, and (c) a sequence of fnur views that were formed by using
3-D transformed laser radar imagery to "fly over" the target.
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Sensor image

Polygonal/planar /Statistical/chaotic
background models background models

Background CNR

Target CNP
Geometric target models Synthetic range image Physical target models

FIGURE 21. Scene decomposition and synthesis of a laser radar range image. The original sensor image (upper center) is
decomposed into polygonal background (upper left); statistical, chaotic, or fractal background (upper right); facet target
models (lower left); and physical target-background parameters (lower right). A new laser radar image is then synthesized

(lower center).

range bins, respectively. These two probabilities are geometry libraries (U.S. Army Ballistic Research Labo-

used in conjunction with a random-number genera- ratory). The physical target models, which are de-
tot to provide two random draws. The maximum scribed by the CNR for each pixel, are used to com-
value of the two random draws is selected as the pute the intensity and range value by using the Hannon

intensity L laser radar model [3]. In the example shown, a variety
The application of the described statistics can be of fractal dimensions were attempted and a best visual

demonstrated through an example. Figure 21 depicts fit was selected for the foliage. A uniform CNR value
the decomposition of a sensor laser radar range image of 17 dB (which is a typical value for imaging generic
into four primary parts. The background and target terrain by the IRAR sensor at 700 m) was used to
models constitute three parts: polygonal background generate the synthetic range image. The generated

models for relatively uniform terrain; statistical, cha- image is visually similar to the original sensor image.
otic, or fractal models for fragmented terrains such as
foliage; and the geometric target models generated Summary

from wireframe or facet libraries (ERIM) or solid A flyable, multisensor system has the ability to mea-
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sure a combination of range, Doppler, laser intensity,
and thermal signatures in both the forward-looking

and down-looking aspects. Statistical advantages for

incorporating multidimensional information exist for

target-detection applications using theoretical analy-
ses and heuristic algorithms. The use of multiple sen-
sor modalities also provides some hope to address the

vexing issues of ATR.

A modular, hybrid ATR system has been described

that fuses statistical, model-based, and neural net-
work processing structures. The system has been tested

on laser radar range imagery as well as synthetic range

imagery incorporating pulsed laser radar statistics.

Results created by using the synthetic imagery indi-

cate that target identification can occur in imagery
with over 50% of the pixels corrupted by noise. Tests
with out-of-plane rotated vehicles indicate that a fi-

nite number of nonuniform angularly spaced projec-
tions can be learned by the system to provide target

identification. The current system can also provide

identification with spatial resolution as low as 20%

above the Johnson criteria.
To continue to test and evaluate complicated ATR

systems, an ATR evaluation facility is being constructed
to provide real, synthetic, and hybrid sensor image

input to a selected ATR. This facility uses the avail-

able high-resolution down-looking laser radar range
imagery and high-fidelity target models to generate

the various operational scenarios.
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An Efficient MRF Image-
Restoration Technique Using
Deterministic Scale-Based
Optimization
Murali M. Menon

0 A method for performing piecewise smooth restorations on images corrupted
with high levels of noise has been developed. Based on a Markov Random Field
(MRF) model, the method uses a neural network sigmoid nonlinearity between
pixels in the image to produce a restoration with sharp boundaries while
providing noise reduction. The model equations are solved with the Gradient
Descent Gain Annealing (GDGA) method-an efficient deterministic search
algorithm that typically requires fewer than 200 iterations for image restoration
when implemented as a digital computer simulation. A novel feature of the
GDGA method is that it automatically develops an annealing schedule by
adaptively selecting the scale step size during iteration. The algorithm is able to
restore images that have up to 71% of their pixels corrupted with non-Gaussian
sensor noise. Results from simulations indicate that the MRF-based restoration
remains useful at signal-to-noise ratios 5 to 6 dB lower than with the more
commonly used median-filtering technique. These results are among the first
such quantitative results in the literature.

N IMAGE-RESTORATION METHOD that reduces Both objectives can be accomplished by using prior
noise while preserving naturally occurring statistical knowledge of the measurement process and

A boundaries in a scene is presented. The th& clutter in the scene, or by using an empirical
method is useful as a preprocessor to enhance the formulation of the desired restoration. ([etails of
performance of automatic target-recognition systems. using either a statistical or empirical formulation arc

"Target recognition is a process that can involve contained in the following section.)
many stages, including measurement, preprocessing, Using the latter approach, the work described in
detection, segmentation, feature extraction, and clas- this article is based on an empirical image-restoration
sification. For adequate recognition performance in a model that requires nearest neighbor pixels to have
noisy environment, it is often important that the similar v'a!uCs (smoothing), without losing fidelity
preprocessing stage be capable of restoring measured to the original measurement. The pixel interaction
imagCs. (We justifthis statement in the section "Simu- of the model smooths small pixel differences,
lation Resu!ts.") The restoration should reduce the but allows large differences to remain as a discontint,-
variability in the scene that results from measurement ity (edge). If detailed statistical information concern-
noise and clutter while preserving important features ing the measurement and scene is available, the infor-
that make targcts separable in the classification stage. m.tion can be quantitatively incorporated into the
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image-restoration model, in the literature. Because of prohibitive computa-

This article describes an image-restoration mudel tional requirements, few quantitative characterizations

that is based on a neural network formulation using of image restoration algorithms have been performed.

Markov Random Fields (MRF), as des( ,bed in the Most work in the literature has compared the restored

box, "Markov Random Fields." In the model, a neu- imagery qualitatively, rather than determining the ef-

ral network signmid function provides pairwise pixel fect of the restoration stage on the overall system

interaction potentials. The function behaves quadrati- performance.

cally for small differences but saturates for large dif- The same model can be applied to a large number

ferences. The MRF property of the model allows an of sensor measurements (Doppler, intensity, passive

image to be, in effect, decoupled into a large number infrared, range, and video) by the adjustment of a

of connected local neighborhoods, each of which can single parameter. This feature is especially relevant for

be processed independently. The local-neighbor in- hardware implementation because it allows a single

formation is propagated during iteration such that a chip to be used for processing a wide variety of imag-

global image restoration is effected when the system ery. The model has a massively parallel architecture

reaches a steady state. The restored image can be with local neighbor pixel interactions (four nearest

found by solving an optimization problem that de- neighbors) and can be implemented on a parallel-

pends on the pixel interaction potentials. The MRF processing computer or a custom analog VLSI chip.
property that allows each pixel update to depend only Implementation of the model in analog VLSI would

on a local neighborhood of pixels eases the computa- allow video-rate restoration of 512 x 512 pixel

tional burden. For the case of a Gaussian pixel inter- images.

action, the potential function is quadratic, leading to
a simple optimization problem that involves the solu- Background

tion of a large set of linear equations. For sigmoid In this section the Bayesian formulation of image

interaction potentials (the present work), a difficult restoration is reviewed to show the formal connec-

high-dimensional nonlinear optimization problem re- tions to the restoration method that is the subject

suits. Stochastic methods are commonly used to solve of this article. The Bayesian formulation relates the

such problems, but such methods are often very slow posterior probability that an estimate of the true

and sensitive to the choice of annealing schedule. We image x' is obtained given a measured image xm and

propose the novel deterministic Gradient Descent the prior probabilities:

Gain Annealing (GDGA) method for solving high-

dimensional nonlinear optimization problems. This p(X xII)I P(x"J Xr)p(Xr)

method is fast and automatically chooses an annealing P(x')
schedule. GDGA is used to solve optimization prob-
lems resulting from the neural-network-based MRF The term P(x"'I Xr) incorporates prior knowledge of

image-restoration model. Previous deterministic an- the measurement process, and P(xr) incorporates prior

nealing work, such as mean field annealing [1, 21, knowledge of the scene. The present model finds an

does not incorporate an automatic annealing sched- estimate k' that approximately maximizes P(Xr I Xix)

ole. given the measurement xnm and prior knowledge of

The utility of the NTRF model in restoring images the scene in the form of P(xr). In the present model

corrupted with varying levels of non-Gaussian mea- each pixel depends only on its four surrounding neigh-

surement noise has been investigated. Model perfor- hors and the measured pixel as shown in Figure 1.

mance has been evaluated quantitatively in terms of The probabilistic (Bayesian) formulation is equiva-

target detection and recognition, and the performance lent to a physical system description in terms of an

has been compared to that of the commonly used energy [3]:

median-filtering technique. The quantitative results F 0 - log P(x). (2)

reported in this article are among the first such results
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MARKOV RANDOM FIELDS

A SERIES OF EVENTS in time bution of a random variable asso- The specific energy of inter-
form a Markov Chain if the prob- ciated with latticL site ij and xj is action for a pair of sites is given
ability of the outcome of an event the specific value of the variable by a sigmoidfunction:
at time t + 1 depends only on the at that site. Thus the definition of
outcome of the event at time t. an MRF on a lattice transforms E?(x) =

This concept can also be ap- a global problem into a more 1+ eAX-

plied to processes on a lattice. computationally tractable local
A Markov Random Field (MRF) problem. where the gain (13 < 0) defines
defined on a lattice implies It is also true that an MRF on the scale of the sigmoid, as shown
that the update of a pixel at a lattice has the following energy- in Figure B. A small magnitude
site ij depends only on the val- based formulation: of the gain produces a large-scale
ues of pixels in a local neigh- -("(x) (broad) sigmoid, while a large
borhood of sites Ni (Fig- P(x) e magnitude of the gain produces a
ure A). In terms of conditional Z small-scale (narrow) sigmoid. For
probabilities, where U is the global potential either case, the sigmoid function

function for the entire lattice and has the property that the response
P(Xij =x ij1 Xlk = X/k, Zis the partition function, which saturates after the input exceeds a

1k C lattice, 1k ;,) normalizes the probability P(x) to certain level. For a high magni-
a range from 0 to 1. tude of the gain, note that the

= P(Xii = xjl Xlk = xlk, In the present work the energy sigmoid saturates very quickly,

lk C Ni), E(x) is defined over all indepen- even for small inputs. The gain in
dent pairs of sites p on the lattice: the sigmoid function is inversely

U proportional to the temperature

where Xj is the real-value distri- 1U(x) = EP(x). of an energy-based formulation.

Fp(x)

-Moderate 1Io High I/

..

Low It;

FIGURE A. Markov Random Field (MRF) defined FIGURE B. Sigmoid function EW(x) for different magnitudes
on a lattice. In the figure, the update of a pixel at of the gain P3. A small magnitude of the gain produces a
site q depends only on the values of pixels at sites large-scale (broad) sigmoid, while a large magnitude of the
Ik in a local neighborhood of sites Ni. gain produces a small-scale (narrow) sigmoid.
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Thus au NIRF inage processor may be specified by Surround interaction
defining the energy function rather than the prob-+
abilities. lhis empirical approach is used in the present
work. X x r

Model Description

-quation 2 indicates that a miinimization of the cn-
orgy will result in a maximization of the probability r

W(x' ix"`). The total system cncrgy can be expressed as 110 Field interaction

the sum of a field term (which is due to the mcasurced

limage) and a surrond term (which is due to the
neighbor interactMins):

I S

A: = I1:. + E (3)

The field coupling A in :quation 3 is an adjustable

paramcter that determines the importance of the inca- FIGURE 1. Nearest-neighbor architecture used in the

surement term relative to the surround term: a small Markov Random Field (MRF) image restoration.
value of A produces a highly smoothed image with
little contribution from the measured image, whereas
a large value essentially reproduces the measured inm- tion "Deterministic Solution") to decrease the satura-
age. The signioid function is used in both terms. The tion gain termn3 in Equations 4 and 5 from -0.001 to
field term is given by -10.0. (Note that the gain is negative in the present

formulation.)

I =00 (4) The saturating aspect of the sigmoid function (from
1 + e')' the neural network literature 141) in 'qtuation 5 al-

lows the formation of sharp boundaries between dis-
where A"' iS the dif'ference between the restored and similar regions. The main advantage of using a sig-
mcasured pixels (i.e., A" = xj -- x"' ), and fi1: is the mold surround termn is that sharp segmentations can
saturation gain term. The siginoid function is also be obtained without a separate "line process" 131,
used for the surround term: which would require solving 2MN - M - N extra

equations. Hence the sigmoid term clearly reduces
S p (5) the comnputational load. For the same reason, a sig-

1+efi (e) moid function is used for the field, or mcasurenicnt,

term. The sigmoid function solves the problem of
where A', is the surround pair difference, i.e., providing smoothing (noise reduction) while prcserv-
A, , - X,, where p refers to all independent ing naturally occurring boundary information in the
nearest neighbor pixel pairs in the image, and pi scene.
and p2 rcfcr to the nmcmbcrs of a pair). Note that
for an Al x N lattice there are (N - ])A, Optimization Methods

horizontal pairs and (M- I )Nvertical pairs for a total
of 2MN- AM1- N independent pairs. Stochastic Sohaion

The estimate of the original image .,' that mini- Tb solve the nonlinear optimization problem sug-
mizes the system energy is obtained with a dctcrmin- gestcd by Equation 3, researchers have often attempted
istic search procedure. T[he present work uses the stochastic methods, which do not require the dcri-
(; )(;A detcrministic search (described in the subscc- vativc of the energy with respect to the restored

ISO r I l'fil Y V I AWMR&Tf•k, I111I 4 1 1111 HMII,[ i. VIINAW[ H 1 1 i
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state and, as a consequence, can be used for a sampler [8]. For a comprehensive study that ihvesti-
wide range of optimization problems. Stochastic gates the application of simulated annealing to image
methods are also well suited for high-dimensional reconstruction, see Reference 3 by S. Geman and
problems that are characterized by many acceptable D. Geman. The problem with such stochastic solu-
solutions (restored states) all having approximately tion techniques is that a good annealing schedule is
the same energy. Image restoration requires a solution difficult to determine, and the solution time can be
with low energy, but does not need the global prohibitive in terms of the number of iterations re-
minim u m. quired because an equilibrium must be reached at

The present work derives a stochastic solution by each stage of annealing. At high temperatures a large
relating the statistical description of the problem to temperature step is possible because the search covers
an energy-based representation. By making a cor- a wide range of the state space. As the temperature is
respondence to a physical system at thermal equi- lowered, however, the system often reaches a critical
librium, we can express the formulation in Equa- point below which the state is "frozen," analogous
tion I in terms of minimizing the energy of a to the phase diagram of real physical systems. If
system. The probability that a physical system in the critical point on the energy-versus-temperature
equilibrium with a heat bath at temperature Tis in curve were known, then large steps could be taken
state i with energy Ei is given by the Boltzmann before the critical point were reached and small steps
distribution: afterwards. Unfortunately, the "phase diagram" de-

pends on the initial measurement, or field, term.
In practice a conservative annealing schedule is

P1. (x = i) = e,• B, often used:
Z(T)

where k1B is the Boltzmann constant and Z( T) is T o I

the partition function, which is simply the sum of log k
the exponential term EI(kBT) over all possible where k is the iteration number and T is the temp-
states i. erature. Such a scheduL. can require hundreds of thou-

It is assumed that the solutions to the optimization sands of iterations or more to produce an acceptable
problem are equivalent to the states of a physical restoration. Automated Local Annealing (ALA) has
system and the cost of a solution corresponds to the been suggested to provide an automatic annealing
energy of a state. Asymptotic convergence to a set of schedule for neural networks [9], but the procedure
globally optimal solutions can be obtained provided is not directly applicable to an image-restoration
that the different states are generated properly and the formulation.
appropriate conditions are used to decide whether a Another problem is that the computational ex-
given state should be accepted [5]. Stochastic meth- pense of the stochastic method also depends on the
ods for solving the optimization problem involve start- number of allowable states per image pixel. An image
ing at a high temperature and annealing (i.e., re- with 8-bit pixels requires many more iterations for
ducing) the temperature until the system "freezes" to the full exploration of the state space as compared to,
the minimum energy state. Ideally, the proce- for example, a 4-bit image. Indeed, the solution of
dure would be implemented reversibly such that the such nonlinear optimization problems remains a chal-
system is always at thermal equilibrium and a true lenging research area.
global minimum is reached rather than a metastable
state. Deterministic Solution

Stochastic methods for solving nonlinear optimi- The large number of iterations that the stochastic
zation problems typically use a simulated annealing approach requires in practice has motivated the use of
method [6] combined with a Monte Carlo technique a deterministic solution technique to solve the non-
such as the Metropolis algorithm [71 or the Gibbs linear image-restoration problem. The deterministic

,T, , 15 1



MENON
An Efficient MRF Image-Restoration Technique UIsing 1)etermiwnsi Scale-Ba~ed Optimization

approach attempts to minimize the system energy by NY given by
iteratively updating pixel values across the lattice until +, I+ ,
a steady state is reached. In the approach, the use of N, =
high gain values for the iterative solution to Equation Hence, with this local neighborhood the update
3 produces a restored image with sharp boundaries, of a pixel at lattice site ij depends only on the pixel's
(Note: In the analogy of the physical system discussed fiur nearest neighbors.
earlier, a high gain value corresponds to a low tern- The objective is to find the steady-state solution to
pciature, or a small scale in that a small change in the Equation 6 that results in a state .x¢ that minimizes the
input to the sigmoid function will produce a large system energy. The particular form of Equation 6, the
change in the Output.) T'he use of high gain values, equation of motion, guarantees that the steady-state
however, will most likely lead to the procedure's being solution minimizes the energy. This relationship can
trapped in a local minimum. 'lib remedy this problem be shown by using the identity
we have developed the (,D(,A technique, which starts
the solution procedure at a low gain (i.e., a high dE _ dX -
temperature, or large scale). T['he intermediate solu- dt dCxr -t (7)

tion at low gain is then used as an initial condition to
the problem at a higher gain, and the procedure is and substituting for dxr/ft from Equation 6 into
repeated until the final desired gain values are achieved. Equation 7, resulting in
Solving a series of problems each at higher gain values
is equivalent to temperature annealing in the stochas- d h ( dE ' V
tic approach. In addition, we have developed an ,,,to- dt -. 7 •
ma'tcannealing (gain increase, or scale decrease) sched-
tile that is described below. In the present work the GDGA deterministic tech-

An equation of motion based on the total energy nique is used to minimize the energy. This formu-
from Equation 3 is defined by lation is similar to the Graduated Non Convexity

(GNC) approach of A. Blake and A. Zisserman

x .- V E, (6) [10] and the technique used by Y.G. LeClerc [ 11,
~t and has somc similarity to mean field annealing

[11. We have found GDGA to be substantially faster

where t represents a pseudo-timc quantity. If Equa- than the stochastic techniques described in the litcra-
tions 4 and 5 are substituted for the total energy term ture. The GDGA technique iteratively solves Equa-
in Equation 6, then the equation of motion for a tion 6 by calculating the gradient of the energy and
single pixel at a lattice site ij is updating the state (similar to an Euler solution of a

system of coupled differential equations). In this
O___ -0 ,___ _ approach the magnitude of the gain terms /3' and

E+ (A,), I3" in Equations 4 and 5 are increased from a value
I + e A starting at 0.001. At small gain magnitudes the res-

d 1 toration acts to smooth the image because the en-
-v 1 +e"(L'P ) ergy terms are approximately locally quadratic with

I+ e ' Pthe pixel difference. (An energy term that is quad-
ratic generates a larger penalty for larger pixel dif-

where X/k recfrs to all of the lattice sites in the image ferences. Hence a smooth image, i.e., an image with
and Y/, refers to all of the independent pixel pairs in equal pixel values, minimizes this energy.) Also,
the lattice. In 0,.- present work the MRF is given by at small gain magnitudes all edges in the image
the two horizontal and two vertical pairs associated are smoothed, resulting in a blurred image. As
with a given lattice site ij, resulting in a neighborhood the magnitude of the gain is increased the natural-
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ly occurring boundaries in the measured image and the derivative is given by

start to appear, and eventually a sharp segmentation

results. E_ eA2

The steady-state solution of Equation 6 at a given d (3 (A + e ))

gain value is found by setting the gradient of the \ (

energy to zero and iteratively solving for the new pixel
value. The deterministic technique is implemented Note that in Equations 10 and 11 the gain
with a fixed-point iteration around each pixel, in term /3 refers to both the field and surround
which the pixels are updated with a Jacobi (fully terms.

parallel) scheme [121. In the technique, the gradient The GDGA technique starts at a small magni-
of the energy is set to zero, and the term x is updated tude of gain and repeatedly applies Equation 8 until

based on the old values of its neighbors: convergence, which typically requires fewer than
10 updates. Then Equation 10 is used to update

( Fn x F the gain terms 1i and f'; and, with the new values, the

-nOC) 0 (A) + Alx(i) pixels are again updated. The procedure is terminated

xA3 g#.+ 15'(B) when the magnitude of the gain becomes large-

where typically, a value of 10. For both simulated and real

S xr(old) S g r(Old) S r(old+ images, the GDGA algorithm is able to complete the
A = gi,j-I i,j-I + gij+. i,j+l + gi-ijXi-lj restoration process (i.e., achieve sharp segmentation

S r(old) with noise removal) by using a total of 100 to 200+g+ ,_ii,., aapplications of the update equation (each application,S S S S
B i,j-1 + gij+1 + gi-I'j + gi+1,j • or iteration, of Equation 8 updates all the pixels in the

lattice). The restoration of a 128 x 128 pixel, 8-bit

(8) image requires less than 5 min on a SUN-4 work-
station.

In Equation 8 the nonlinear term go is given by Further experiments have revealed that the auto-

e p(A, 2

+1 eI(A )2) 2')

where A is calculated based on the old pixel values.

At this point the lattice could be updated, but a

gain annealing schedule has not yet been speci-
fied. The GDGA technique automatically selects

an annealing schedule by using feedback from
the total system energy to select the gain step size.
The strategy involves varying the step in /3 in or-

der - maintain constant steps in energy. The /3
stcj given by

ALE
A/3 = E '

a/3
FIGURE 2. Original (noise free) image containing a lin-

In Equation 10 a constant energy step AE is used, early sloping background with a target at constant range.
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I- Acceptable performance with
70% measurement noise
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FIGURE 7. Average percent anomalies for range imagery as a function of sen-
sor CNR. The results from MRF restoration are compared with median filter-
ing and the case in which no processing has been performed to restore the image.

Each data point represents an average over 10 runs at a given noise level.
For effective target detection, the pErcent of anomalies must be less than about
10%. Thus the results indicate that MRF restoration is effective up to a CNR of
about 6 dB. At this CNR value the average percent of anomalies is 71% for the
input image, 55% for the median-filtered image, and only 4.5% for the MRF-
restored image. Clearly, MRF restoration provides superior detection performance

in a high-noise environment.

created a unique category for each silhouette. At lower the use of a median filter.
CNR values (higher noise), however, the clas-
sifier formed extra categories because exemplars of Hardware Implementation
the same target were sometimes classified into dif- For real-time image restoration, the MRF model can
ferent categories. We repeated the above proce- be implemented either digitally -on custom digital
dure twice: once using the median-filter technique on signal processing (DSP) chips or on a single-instruc-
the corrupted images before the detection and seg- tion multiple-data (SIMD) computer such as the
mentation steps, and once using MRF restoration. Connection machine manufactured by Thinking
Figure 9 compares MRF restoration with iterated Machines Corp.-or in an analog manner on a
median filtering and with the case in which no custom VLSI chip.
processing had been performed to restore the image. For digital implementation, 72 floating-point
The performance at each CNR value is defined as operations are required per pixel update. Typically, a

the fraction of the 96 examples that the NNC pixel must be updated about 100 times over the

has classified correctly. Note that the MRF restora- course of the restoration. Thus a 256 x 256 image
tion is able to maintain an acceptable level of perfor- restoration would require 472 million floating-point
mance at a CNR that is 5 and 10 dB lower than with operations, and a frame-rate restoration of the same

the median-filter and no-preprocessing case, respec- image would require digital hardware that delivers 14

tively. Thus, with MRF restoration, a sensor can be GFLOPS of performance. This performance level is
operated at roughly 25% the power level required by at the leading edge of current digital processing tech-
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FIGURE 8. Binary silhouettes of 8 different vehicles that were used to evaluate the effect of

MRF restoration on target recognition. (For the test results, see Figure 9.)

1.0

0.8 Acceptable performance

o einfilter

ii0.2 M F restoration _

U0.0

0 10 20 30 40

Carrier-to-noise ratio (dB) for sensor

FIGURE 9. Fraction of correctly classified range slices as a function of sensor

CNR. In the experiment, the binary silhouettes of 8 different vehicles (Figure 8)
were used to create realistic nose-corrupted range measurements. Detection

and segmentation were performed on these simulated range measurements to

obtain noisy binary range slices in which only those pixels with a certain range are

shown. A total of 12 such slices was produced for each of the 8 silhouettes at each

CNR value. The 96 range slices at each CNR value were then used for training a

Nearest Neighbor Classifier (NNC) [151 to separate the 8 different vehicles. Before
being presented to the NNC, some of the range slices were restored by the MRF

model and others by an iterated median filter. The results compare MRF restora-
tion with the median-filter technique and with the case in which no processing

has been performed.
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Surround resistor The throughput is limited by the input/output onto
, r+ 1.J and off the analog chip, and not the circuit. With

current technology, images can be restored at a rate in
the thousands of frames per second.

RS/ r Summa~ry

S- "An efficient Markov Random Field (MRF) based

method for performing piecewise smooth image res-
v R - Field resistor torations has been demonstrated. The underlying

R Flmodel uses a neural network sigmoid potential be-

tween pixel pairs to allow the formation of sharp
boundaries between dissimilar regions in the presence

of noise. A novel deterministic method-called

Gradient Descent Gain Annealing (GDGA)-for solv-
ing the nonlinear coupled set of differential equations

that the MRF model introduces was presented. The

FIGURE 10. System architecture implemented as a re- GDGA algorithm typically requires fewer than

sistive grid (compare with Figure 1). The voltages Vm 200 iterations to restore an image, where the number

and Vr represent the measured and restored images, of iterations is roughly proportional to the level of
respectively. Note the presence of both field and sur- noise in the image. Computer simulations on noisy
round resistors. images have shown that restorations can be performed

for very high noise levels (i.e., images that have up to

nology. The advantage of an all-digital implementa- 71% of their pixels corrupted with non-Gaussian

tion is that it does not require the hardwiring of any sensor noise). Simulation results indicate that MRF

of the system parameters. restoration provides a 5-dB advantage in the carrier-
An all-analog implementation requires the imple- to-noise ratio (CNR) over conventional iterated me-

mentation of the energy function as an analog circuit. dian filtering. Although the same model is currently

In the current example the system architecture can be used to restore images from different sensors, arbi-

represented as a resistive grid (Figure 10). The resis- trary potentials can be incorporated for the pixel in-

tors are nonlinear in that their resistances are voltage teractions so that the system can be tailored to specific

dependent: natural scenes and sensors. The system uses a mas-

)2 sively parallel set of local neighborhoods (four nearest

1+ e(AP)2"2 neighboring pixels) for efficient implementation on

R(A ) ) a parallel-processing computer or a custom analog

R(Aef(P)2 VLSI chip.
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Machine Intelligent
Automatic Recognition of
Critical Mobile Targets in
Laser Radar Imagery
Richard L. Dclanoy, Jacques G. Verly, and Dan E. Dudgeon

U A variety of machine intelligence (Ml) techniques have been developed at
Lincoln Laboratory to increase the performance reliability of automatic target
recognition (ATR) systems. Useful for recognizing targets that are only

marginally visible (due to sensor limitations or to the intentional concealment
of the targets), these Ml techniques have become integral parts of the
Experimental Target Recognition System (XTRS)-a general-purpose system
for model-based ATR. Using laser radar images collected by an airborne sensor,

the prototype system recognized a variety of semi-trailer trucks with high
reliability, even though the trucks were deployed in high-clutter environments.

T il- CONSTRUCTI'ION of an automatic target rcc- of the former Sor'iet Union (Figure 1 lcft l). An ANIR

ognition (ATR) system is a demanding task. system for recognizing SRKF must search through
ATlR systems must be able to locate and iden- images generated by one or more sensors (laser radars,

tify specific targets that can l)e concealed intention- real- or synthetic-aperture radars, passive infrared ima-
ally through obscuration or camnottflage, that are of- agers, and video cameras), requiring techniques of
ten designed to be nearly invisible in radar imagery, data fusion. The search is for a very small number of
and that can be deployed in the midst of distracting targets in a continent-sized area. The targets might be
signals. TO gain tactical advantage, it is generally irm- caught in the open, but more likely will be found
portant that an AlR system be able to find a target along tree lines, perhaps partially occluded by foliage.
from ais far away as possible. Under such conditions, Because of the nature of the targets, a high probability
the selectively indicative signal features (signatures) of detection is crucial. And yet the ATR system must
associated with a target are often barely discernible generate ftcw false alarms (FA) due to mission limits
froni the background. Thus, inevitably, practical A'R on the number of weapons that an aircraft can carry
systems mLust be able to discriminate targets from to destroy the SR.s, the flying time of the aircraft
background in spite o weak, ambiguous, uncertain, over the target area, and the processing capabilities of
variable, ',r even coi, adictory evidence. hunman operators wio must decide which detections

ATR system development can be particularly diffi- to pursue. A closely related mission is the detection of
cult under certain mission constraints and when the Scud launchers, sudh as those tised by Iraq in the
costs of system error are high. One such ATR applica- Persian (Gulf War. A general term, critical mobile
tion is the use of airborne sensors to recognize strate- target ((MT), refers to all mobile missile launchers,
gic relocatable targets (SR'l ) such as the SS-25 ICBM including those used with SS-25 and Scud missiles.
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FIGURE 1. Photographs of (left) mobile missile launcher carrying a strategic SS-25 ICBM of the former Soviet Union, as
shown in a Soviet newspaper, and (right) tank truck used by Lincoln Laboratory as a substitute vehicle to develop and test
an automatic target recognition (ATR) system for detecting critical mobile targets (CMT) such as the SS-25 launcher.

"Io achieve reliable detection and recognition per- vision wvorks on a domain of pixel-level data. Because
forniancc in such demanding applications, wc have the associated image processing operations arc highly
dcveloped several new machine intelligence (Nil) tech- repetitive and therefore relatively slow, low-level op-
niqucs, including new approaches for model-based erations tend to be kept simple. And, because a scene
classification [1 31, automatic learning of models [4], can contain many objects of potential interest, low-
knowledge-based signal processing [5, 61, selective level operations tend to be generic and relatively dc-
attcnltion 7]. and pixel-level data fusion I]. The void of object-dependent knowledge. A typical low-
Expcrimental liarget Recognition System (XTRS) de- level operation is cdgc detection. In high-level vision,
vcloped at lincoln Laboratory [8-101 provides a frame- the pixel-lcvcl data (for the edge-detection example, a

wk-ork for the application of these techniques and for pair of images shinning the strength and orientation
the rapid prorotyping of ATR systems. Though XTRS of edges) arc transformed into symbolically described
and these new Nil techniques werc intended specifi- fcatures. Object identification is then performed by
cally for AIR. they constitute a general-purpose ap- matching these features against prior knowledge of

proach to object recognition, with many potential object characteristics.
applications. For example, XTRS has been applied This basic organization of computer vision has
succCssfullY to the detection and tracking of hazard- often been used in the design of ATR systems. In the
OuIis weather phenomena, as described in the article detection process, which is analogous to lo0WlcvCl
"NMachine Intelligent (;ust Front Detection" by Rich- vision, a threshold is applied to a set of signals. The
ard I.. l)clanov and Seth WV. Troxcl in this issue [1 1 i ' signals can come directly from a sensor or they can be
In the current article, wc apply XTRS to the detection i', result of a signal processing operation. For the

and recognition of (N1Ts, specifically, tank trticks threshold to be effective, the sigials associated with
(Figure 1 [right]) and logging trucks used as substi- targets must form a distribution that is distinguish-
tutcs foir missile launchers. able from the distribution of signals associated with

other objects in the background (i.e., clutter). Figure

Low-Level Machine Iktelligence 2(a) illuistrates this point. In any realistic detection

( omputcr vision systems have traditionally been de- problem, there will exist some targets that have sig-
sigied in terms of a hierarchy of levels. Low-level nals below the detection threshold; those targets will

162



• DELANOY ET AL.
A,'ciini' AIdhrent Aurorawm, Retognmt.,n ,(.ritic/ dAobd ldirget, i la ,,r ki•dir lpan,ýer

not be detected. There will also exist instances of image. Clusters of high interest values are used as a
clutter associated with signals that are above the de- guide to focus computational resources on likely tar-
tection threshold; such instances will result in lAs. gets. In Figure 2(a), a threshold was applied to the

De)velopers of ATR systems have generally followed quantity "signal strength." For simple APR systems,
the strategy of keeping low-level vision devoid of the signal is typically the intensity of returned electro-
object-dependent knowledge, and the processing done magnetic energy or a simple function thereof. Interest
in preparation for the application of thresholds is provides an alternative flexible metr;c to which thresh-
usually kept simple. As a result, the thresholds must olds can also be applied. The power of this approach
be set fairly low to maximize the likelihood of detect- is that the output of any sensor modality or feature
ing targets. The high-level recognition process is then detector can arguably be expressed as an interest Im-
responsible fiir suppressing as many FAs as possible, age. Furthermore, the use of interest as a common

Usually, FA suppression is acco nplished through the denominator greatly simplifies the fusion of pixel-
use of classifiers based on statistical techniques or MI level data. Specifically, interest enables the use of simple
techniques, including those involving expert systems, arithmetic or fuzzy logic to fuse spatial evidence from
model-based matching, and neural networks. How- a variety of sources.
ever, when a given AUR application involves only one There are three steps in low-level MI as used by
or at most a few intended targets or classes of targets, XTRS in the detection process. First, relevant feature
the use of object-dependent knowledge for the detec- detectors are selected, given knowledge of the situ-
tion process is feasible. And, in fact, because targets ational context. The context may include the intended
are often hidden, camouflaged, or otherwise only mar- set of targets, various sensor-related parameters, and
ginally visible, object-dependent knowledge can play identifiable environmental conditions affecting sen-
an important role in enhancing detectability. In par- sor performance and target appearance. Often the use
ticular, detection performance can be improved by
separating the distributions of targets and clutter, as
shown in Figure 2(b). Although various techniques W Threshold
have been developed to increase this separation (see,
for example, Reference 12), the techniques do not
typically involve any detailed object-dependent Cu

-0 Targetsknowledge. 2
Thus, in addition to using Ml techniques in the S_

conventional role of high-level classification and FA Signal strength
suppression, we have developed a set of new tech-
niques for low-level Mi. Thresholds are still an un-
avoidable part of detection but, when low-level MI is Threshold
applied directly to the pixel-level data early in the -
detection process, the use of thresholds is in a relative
sense postponed and, as a result, made more effective. Ct

0-

Interest Imaqes Tg
Signal strength

A key to implementing low-level Mi in XTRS is the (b)
concept of interest and interest image [7]. By our defi-
nition, interest is a dimensionless quantity indicating FIGURE 2. Discrimination of target and clutter signals
itheike o athrough the application of a threshold: (a) typical overlap

the likelihood that a specific feature, indicative of a of targets and clutter distributions, and (b) illustration of
target or class of targets, is present at a given image how signal processing, either conventional or machine
pixel. A spatial map of such interest values, each intelligence (MI) based, can improve detection performance
constrained to the range [0,1], constitutes an interest by increasing the separation of the distributions.
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of just (One feature detector can accomplish adequate ton and mathematical morphology (NI M) [131 can
targct-detcction performance. be generalized into a single class of operations, whInch

In the sconed step, the selected tfature detectors wc have called ,f!ictimi,-th.l s/,a/, itc/,iltg. Brictl de-
are applied to the appropriatecly prepared input imag- scribed, these shapC-analysis tools all use kernels (struc-

cry. Each detector generates as its output an interest turing elements in M1M), which arc basically subiniages
image that provides spatial evidence for the presence that are looked for within the image to be probed. For
of particular target f.attures. A targeted object may be probing a pixel in an image, the origin ofa partic lar

represented by more than one detector, each detector kernel is positioned over the pixel's location. A two-
looks, for example, for a distinct set of features or for argument function is then applied to each kernel
an alternative target configuration. value and the corresponding value in the image. (or

The final step calls fbr the fusion of evidence, cross-correlation, the two-argument function is miul-
which is accomplished with a rule of' combination tiplication. For MM dilation and erosion. the funI-
prescribing how interest values from multiple interest tions arc addition and subtraction, respectively.) Next,
images arc to be combined. The rule of combination an arbitrary operator is applied to the function values
depends on the set of fcature detectors selected. In the obtained for the set of pixel locations on the kernel.
case of multiple feature detectors looking for altcrna- (For cross-correlation, the operator is sumIliation. For
tive target configurations, the rule of combination MM dilation and erosion, the operators arc maxi-
could be the laXIn1u1 (Juzzy-or in fuzzy set theory); mum and minimum, respectively.)
i.e., at a specific pixel location, the maximum of the Eventually, we realized that functional shape match-
interest values across all interest images at that loca- ing not only includes the classic shape-analysis tools,
tion could he used. In the case of several feature but it also encompasses a 0nal processing
detectors looking for different vehicle fieatures that are techniques that have never been tried before. From
likely to be present all the time, the fusion of interest functional shape matching, we implemented a tool
values might be done by an averaging process. Al- for generalized matched filtcring called, Iictional/ten-
though not fully exercised in the CMT version of plate correlation (FTC) [51. Whereas the kernel of the
XTRS, the rule of combination could be arbitrarily classic techniques is a subimage indicating specific
complex to reflect knowledge of the variable reliabil- expectations of image values for a successful match,
ity of different feature detectors under different view- the kernel used in FTC is a set of indexes, each
ing conditions, corresponding to a unique scoring function. Each of

For situations in which only targets return strong these scoring functions can define arbitrary expecta-
intensity signals, the intensity signal returns might tions for image values at each pixel location on the
provide a ready-made interest image. In practice, how- kernel. The outputs of these scoring functions are
ever, laser intensity can be an unreliable discriminant scalar values, which are averaged and then "clipped"
because the energy returned from a target surface to the range [0,I]. (In the clipping process, those
depends on the specularity of the surface and its averaged scores which are less than zero arc assigned a
orientation relative to tie incident laser beam. Also, value of zero, while those averaged scores which are
high (or low) range values from a laser radar are greater than one arc assigned a value of one.) Coompa-
usually unreliable predictors of target locations be- rablc in spirit -o the membership functions of fuzzy
cause targers are not customarily parked at the highest set theory, scoring functions provide a means of en-
(or lowest) points in a locality. Thus the effective use coding unccrtaintics. But, in addition, scoring func-
of laser radar imagery requires that objects in the tions can be used to encode a surprising amount of
imagery be identified also on the basis of shape. knowledge of the physics of a matching problem.

Using FTC, we can construct customized marching
I'un'tiontal/'lmp/ate ('orrelation tecl,niqucs that are more powerful than the classic
In studying the principal techniques for shape analy- shape-analysis operations. (Note: For a brief intro-
sis, we found that the basic equations of cross-correla- duction to FTC, see the box, Functional Th:nplate
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Correlation," in the article "Machine Intelligent truck, and an empty logging truck. This variety, of
Gust Front Detection," by Delanoy and Troxel in this vehicles was used to test XTRS's ability to discrimi-
issue j1ll.) nate between targets of similar shapes and sizes. The

vehicles were positioned on or near roads, both in the
Data Used in System Development and Testing open and ahog tree lines. The man-made, or Cuhural,

For the development and testing of a CMT version of clutter included residential neighborhoods and a log-
XTRS, a large dataset of images in Maine was col- ging camp (Figure 3) that contained heavy logging
lected to simulate the detection of CMTs in a high- equipment such as other semi-trailer trucks.
clutter, maianlv forested environment. Semi-trailer Pixel-registered range anti intensity images of the
trucks, which approximate the appearance of missile various vehicles were generated with the Hughes-
launchers, were positioned amidst both natural and Danbury GaAs Laser Linescanner carried aboard a
man-made clutter. The simulated targets included the Gulfstream G- I aircraft (Figure 4). Characterized by
tank truck shown in Figure 1 (right), the same tank a 0.8 5-pm wavelength, the linescanner has a range
truck but under camouflage netting, a loaded logging ambiguity of 10 m, a precision of ambiguous-range

1P

FIGURE 3. Aerial photographs of man-made, or cultural, clutter represented in the laser-radar-image dataset. Contained in
the photographs are railroad cars, fuel tanks, stacks of logs, empty logging trucks, other road vehicles, and heavy logging
machinery. All of these objects, easily confused with the set of targets being sought, are potential sources of false alarms
(F A).

165



DELANOY ET AL.
Alachine Intefigent Automatic Recognition of'Critical Mobile i1irgets in l.a~er Radar Imagery

collected contained 2303 image pairs (range and in-

tensity) covering 17.13 km 2 of ground area un-
der both winter (snow) and summer (dense foliage)
conditions.

System Description

The architecture of the CMT version of XTRS con-

sists of five modules (Figure 6): preprocessing, detec-
tion, extraction, decomposition, and matching. Each
module has a standard structure (Figure 7) that con-
sists of four main elements: (1) a parameter library-

Electronics racks a collection of algorithms, numbers, and/or data struc-
tures that encode knowledge relevant to the current
stage of processing; (2) a parameter selector-a rule-
based expert, i.e., a collection of rules, that uses con-
textual information and previous results to choose
parameters from the parameter library; (3) a generic
processing engine; and (4) a rule-based feedback ex-
pert that evaluates the output of the processing en-
gine and decides where control should be directed. In

"the complete system, the feedback expert of one mod-
ule and the parameter selector of the subsequent mod-
ule conceptually form a local-control node.

0.85-pm down-looking laser radar linescanner Preprocessing
10.6-pm forward-looking laser radar
8-to-12-pm forward-looking passive imager The Hughes-Danbury GaAs Laser Linescanner pro-

duces pixel-registered range and intensity images that,
in preparation for the detection process, require a

FIGURE 4. Lincoln Laboratory airborne sensor platform. numbe r ati t hens etections.

The Gulfstream G-1 carries a 0.85-pm down-looking laser number of data transformations.
radar linescanner, a 10.6-pim forward-looking laser radar, First, because an aircraft's speed with respect to the
and an 8-to-12-pm forward-looking passive imager. The ground varies depending on the wind velocity vector,
images used in the experiments described in this article the aspect ratios of targets that have been imaged by
were collected with the 0.85-tim linescanner. the linescanner can often become distorted. In an

operational system, these distortions can be avoided
values of 15 cm, and an angular resolution of 1.0 by using an inertial navigation system either to regu-
mrad. Images were col:.'cted during the winter and late the linescan rate or to provide data that would
summer of 1989 with a down-looking sensor plat- allow the images to be corrected by interpolation. For
form that was operated at altitudes between 200 and the data used in this article, the interpo'lation was
300 m by the Opto-Radar Systems Group of Lincoln performed interactively to obtain the correct target
Laboratory. The example range and intensity images aspect ratios.
shown in Figure 5 reveal the high resolution achieved Second, the ambiguous-range values are converted
with the 0.85-jim linescanner. Image widths were to absolute altitudes above some arbitrary reference
between 64 and 150 m; image lengths could be arbi- altitude. Once the absolute altitudes have been deter-
trarily long because of the linescanner used. Long mined, a map of altitudes for the local ground level
scans were subdivided into overlapping images rang- can be computed with a technique based on morpho-
ing in length from 100 to 400 m. In total, the dataset logical operations [14-16]. In the technique, only
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those surface shapes which are wider than the in- high-level matching.
tended targets are retained as part of the local ground (Note: [)uring preprocessing, no attempt was made
level. (Note: There exist other techniques for estimat- to clean the linescanner imagery of noise. Such a
ing the local ground level; see, for example, Reference procedure was unnecessary due, in part, to both the
17.) When the altitudes of the local ground level arc high quality of the imagery and the noise-resistant
subtracted from the absolute altitudes, the resulting properties of FTC.)
image will contain values that are the heights of small
objects (including targets) above the local ground Detection

level. In this article, subsequent uses of the term range In the CMT version of XTRS, three-dimensional
image will refer to this image of heights above the detection is essentially performed by four target de-
local ground level. tectors (i.e., feature detectors representing whole tar-

For the last step of preparation, the range and gets instead of individual features). The tank truck is
intensity images are scaled by linear interpolation to a represented by two alternative target detectors, one in
resolution of 0.25 m per pixel side. Images of lower which the truck is exposed, the other in which the
resolution (0.5 and 1.0 m per pixel side) are then truck is covered with camouflage netting. The logging
generated by a subsampling of the data. The lower- truck is similarly represented by two target detectors,
resolution images are used for detection, while the one in which the truck is empty, the other in which
high-resolution images are used for extraction and the truck is loaded with logs.

i i

(a) (b)

FIGURE 5. Example (a) intensity and (b) range images taken during winter with the 0.85-!rm down-looking laser linescanner

shown in Figure 4. Note the tank truck (lower left), empty logging truck (upper left), and house trailer (upper right) in both
images. The range image has been transformed such that each pixel value represents a height above an arbitrary reference

altitude with lighter pixels indicating a greater height.

161'



- DELANOY E "AL.

.tne h/,ih'/rhge't A.lwomtnti, Rc vugnmoa ul ( lri,al I/nA / ilotetu in L."er Rada' Imagen',

Sensor imagery where the cab or trailer is expected constitutes strong

evidence that a target is not present at that location.

On the other hand, heights greater than tie expected

interval of 2.5 to 3.5 in result in scores no less than

Preprocessing 0.5, the level of ambiguity, because such heights could

potentially indicate the presence of an occludin1g sur-

face. In other words, the cab of a tank truck might or

might not be present under an occluding surface that
Knowledge is at least 4.0 m high.

Detectionrepresentation The other scoring functions work in the same man-

ner, except that the expected interval of heights for

i the background in scoring function 0 is from 0.0 to
- Functional 0.5 m, and the expected interval for the hitch area in

templates
scoring function 2 is from around 1.0 to 2.0 m. These

Extraction scoring functions are tuned such that, when tic tem-

plate is applied to a patch of bare ground (zero height),

the negative scores from scoring function 1 balance

the positive scores generated by scoring functions 0

and 2, resulting in an overall score near 0.0. And, of

Decomposition . Subregion course, an unobscured target should generate a score
stencils near 1.0.

'iThe above functionol-template design provides a

simple means of minimizing the effects of occlusion.

This capability, not easily obtained with cross-correla-
Matching . Appearance tion or MM operations, is necessary for finding tar-

models gets partially, covered by foliage. In the extreme, a

target that is completely occluded should generate a

score of 0.5 (Figure 9).

Recognized targets In Figure 8, the second functional template for the

exposed rank truck is designed for intensity imagery.
FIGURE 6. Architecture of Experimental Target Recogni- Because the surflce of the truck is smooth (specular)
tion System (XTRS), showing the five processing mod-

ules as well as the way in which knowledge is represented with regard to the laser wavelength, the reflected laser

at each level, beam will tend either to miss the sensor (resulting in a

low intensity value) or hit the sensor directly (result-

The target detector for the exposed tank truck ing in a high value). Scoring function 4, correspond-

consists of the two functional templates shown in ing to the trailer and cab, encodes these expectations

Figure 8. The first functional template encodes the by returning high scores for very low and very high

expected appearance of the truck in range imagery intensity values, and low scores for intermediate in-

(i.e., images of heights above the local ground level). tensity values. The hitch area returns the laser energy

In scoring function 1, which corresponds to the top more diffusely; thus, scoring function 5, which corre-

surfaces of the cab and trailer, a maximal score of 1.0 sponds to the hitch area, returns high scores for inter-

is returned for heights from 2.5 to 3.5 m. The uncer- mediate intensity values. The intensity values associ-

tainty comes from signal noise and inaccuracies in ated with surrounding ground areas are highly variable

estimating the local ground level. The negative scores and unpredictable, except that they are seldom very

reflect the fact that tank trucks are opaque to laser low. Scoring function 3 encodes this expectation with

illumination; i.e., the presence of ground-level heights highly negative scores for low intensity values, bHrt nil
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(i.e., no opinion) for intermediate and high intensity the maximal scores at each pixel location. The result-
values. ing combined interest image was then scanned for

I'he two functional templates shown in Figure 8 pixels having interest scores above a certain threshold
were applied simultaneously to the input range and (typically 079), and the above-threshold pixels were
intensity images, and oscrall scores were computed as grouped into clusters.
the average of the scores returned from the six scoring Next, a box was placed around each cluster. The

functions. Because the orientations of targets are typi- boxes were used to extract range and intensity
cally arbitrary and unknown a priori, an FTC score subimages containing the interest cluster and thus the
was computed for each of 36 uniformly spaced tem- candidate target. The boxes were square, vith sides,,
plate rotations (100 increments) at each pixel location 50(% longer than the longest dimension of the targets
of the input imagery. For a particular pixel location in being sought. Up to four boxes with above-threshold

an input image, the score associated with tht maxi- interest scores and a minimum of overlap with each
meally scoring orientation was assigned to the corre- other were constructed for each image. The clustcr of'
sponding pixel location in the output image. As pre- above-threshold interest scores that led to the creation
viously indicated, each such output image is treated as of a particular box was used to create a list of tar-

an interest image, indicative of the likelihood of find- get hypotheses. At each pixel in a clister, the inter-
ing a target at any particular pixel. est score is always associated with the highest-scoring

In a similar way, output interest images were also target detector at the highest-scoring orientation. Lach
generated for each of the three other target detectors, pixel's hypothesis consisted of the highest-scoring tar-
and the four interest images were combined by taking get detector's name, pixel coordinates, orientation,

Data
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module

-" . Locar-conbtoi node
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/ ' "-~ From
SRi&-ased feedhack Uxpeit lbS................................ global

feed backParameter selector f e b c

Contextual expert
information -

Module
Processing engine

To
, . . .... .-: " , :i: i.£ {• :,";"-"g lo b a l

Rule-based feedback expert - - feedback
................... ee~..e..... .e expert
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"-• Local-convti I node
Subsequent I

module
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FIGURE 7. Standard structure of the XTRS processing modules shown in F-igure 6. Note that the feedback expert of one
module and the parameter selector of the subsequent module conceptually form a local-control node.
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FIGURE 8. Functional template for the top view of the tank truck. Shown are the index kernels and indexed scoring functions

for (a) range and (b) intensity images. Note that scoring function 3, i.e., the scoring function forthe surrounding ground in

intensity imagery, has no opinion above a certain intensity value.

and interest score, which was used to rank the hy-
pothcses. For each box generated, information re- EvohZction and Lecompositiou

garding the size and location of the box as well as Windows generated by the detection process are used
hypotheses about what might be in the box was placed as input to extraction. The position and size of each

in a data structure referred to as a "window." Because window arc used to extract full resolution (0.25 m per

the ('M'I" version of XTRS uses the function maxi- pixel side) subimages of range, intensity, and interest.
mum for the rule of combination of interest scores, In the extraction module (Figures 6 and 7), the pa-

the score achieved at any pixel location by the high- rameter selector chooses from the library an extractor

est-scoring target detector is also the value stored at corresponding to the highest-ranking hypothesis in a

that same location in the window, window. In the current implementation of our sys-

1 7 0 .., , I . .ý :: . . 1 . , . .' ,



DELANOY ET AL.
Maclhine Intelligeiit Automtt,c Reogition o( rimtal./1ob/le 1hget., in loaer Rad, r Imago)

tern, a full-resolution functional template is created of one subregion. For the tank truck, Figure 10(a)
for the extractor by a zooming process that is applied shows the eight idealized subregions, each of which is
to the corresponding detection template. The pre- characterized with regard to a number of attributes
liminary location and orientation information recorded such as length and width, and various texture rnea-
in the hypothesis is then used to probe the window sures such as a measure of the local variance in the
with the full-resolution template. The window is subregion. The characterized object region and part
probed only at the pixels immediately surrounding subregions together with a list of candidate target
the hypothesis location and only for orientations identities extracted from the window hypotheses serve
within 10' of the hypothesis orientation. Although as input to the matching process. (Note: If the match-
the angular increment for FTC is 100 for detection, ing module fails to make an identification, control is
an increment of 10 is used for extraction, directed back to the beginning of the extraction mod-

At the location and orientation of the best full- ule. In such a case, the extraction process is repeated
resolution FTC match, a rectangular mask with out- for the hypothesis that has the next highest interest
side dimensions that approximate the dimensions of score. The processing stops either when the target has
the candidate target is positioned to isolate an image been identified or when all hypotheses have been
region. The isolated region then undergoes the appli- examined.)

cation of height thresholds followed by a cleaning
with MM, and the resulting region is subdivided with Matching
a stencil consisting of an array of rectangles (six or Candidate targets are identified by matching the ob-
eight in our application), each marking the area limits ject region and part subregions against appearance

-7f

(a) (b) (c)

FIGURE 9. The functional template for a tank truck is applied to (a) bare ground, (b) a 100% occluded target, and (c) a fully
exposed target. The corresponding expected scores for the three cases are 0.0, 0.5, and 1.0, respectively.
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8 7 LENGTH 5.1 Part nodes
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HEIGHT 2.1
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TEXTURE 7.6
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-*--SUBREGION 5
LENGTH 5.2
WIDTH 1.4
HEIGHT 1.9 TANK TRUCK

• 1
3 TEXTURE 8.2 LENGTH and W1

1 ,

WIDTH and W2
0

*0 0

Object node

()PART1 PART2
1 1)

FIGURE 10. Appearaince models: LENGTH 0 and W LENGTH0 a-d W o

(a) top view of an idealized tank- 1 1
truck region decomposed with a WIDTH I/ andW2 WIDTH and W2

target stencil into eight charac- 0 0
terizecl subregions, and (b) cor-
responding appearance model
(AM) for the tank truck. Note that Part nodes
each of the eight subregions is
characterized with regard to a
n1um1ber of attributes such as
length and width, and various tex- . COMBINED
ture measures. In the AM, an ob- a W 7"#
ject node (TANK TRUCK) is bro-
ken into eight part nodes (PART 4j-#

1 through PART 8) correspond- SAME 1
ing to the eight subregions. Each a W 7

object and part nocde contains a
set of fuzzy predicates that define
the allowable limits for computed (b)

values of the different attributes
such as length and width. Each predicate has an associated weight W1 that is used to bias computed match scores. In a
similar way, constraints (e.g., COMBINED WIDTH and SAME HEIGHT) specify the limits of the relationships between the
different parts. The AM shown here has been simplified. In practice, the AMs of the modeled trucks have as many as 80
constraints between the different parts. Note, also, that for the sake of simplicity, the existence of constraints between
certain parts (e.g., between PART 2 and PART 4) has not been shown.

1 - 2 . . .. . . .
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models (AM) II -31. Figure 10(b) illustrates tile gen- tinuie to construct AM.-s nmanuiallv. 'lhi us aui t0n.ltjic
eral constructHion of an AM for the tank truck. Note construct ion techilique,, e'rce needed.
that the AM consists of an object node (IlANK Automatic model utilding require1 S eAmple sets of
"IT'RUCK) and a series of part nodes (e.g., PAIRT[ I ) the decmposed targets. For each attribute Of' acah
that specif,' the limits of properties of the difierent part of each target, ftLz/v predicate, c.an b c onstructcd
parts. Attributes of the object region and part subrc- fronm the population of values found in diet' exam)plC
gions can include length, width, aspect ratio, circum- set. Figure I I shows a I'Lizz predicate that Ihas been
ference, average image value, and texture measure- constructed for the attribute IEN( hIll of the part
mencts, among other quaiintities. Each object and part node PAAR 1I . The red dots at the top of tile fIgurc
node contains a set of hiizzy predicates and associated represent the population of length valucs fromn all
weights that define the allowable limits for the coin- PARTI Is ill the example set. I)uring the construction
puted values of tile dif'ferent attributes. There is typi- of a fuzzy predicate, oLItlier (i.e., startisticalhY i ucOnsis-
cally one ftzzy predicate for each attribute. In a simi- tent) values are discarded, and a cluster analy'sis
lar way, constraints (e.g.. (C0MBINEI) WII)'IH and performed to determine tile numblY..er of' clusters that
SAME HEI(;HT) spccif- the limits of the relations might best explain variances in the rcnaining 'alues.
between parts. For each cluster, the mean and standard deviation are

By treating a conliputcd attribute 11 as the argument compu, tcd, and an interval ofi maxinluit1 ret urned
of the corresponding fuzzy predicate f'(x), we can score (1 .0) is established between the mini imum and
easily obtain a score /'()) for the computcd value 0. inaximutil leigths of each cluster. Outside this inter-

The scores obtained from a set of fuzzy predicates val of maximum returned score, the fuzzy-prcdicmetc
together with the weights associated with those predi- curve ramps down from 1 .0 to 0.0 with a slope that is
cates can then be used to calculate a weighted average proportional to the standard deviation (Y (if the cluster
that provides an overall match score for each part. popuIlation. The value of ( is mnurltiplied by the coeffi-
Similarly, a match score can be computed for each ciCnt /3 called the recognition tolerance, to determine
constraint. For example, the sum of the widths of the width of the ramping interval. For small values of"
PART I and PAR'T' 2 would be the input to the P, the fuzzy predicate is relatively intolerant of lengths
constraint COMBINED WII)TH shown in Figure that are outside the already observed rangc of v-alues,
10(b). Match scores for each part and each constraint while high values of ti resulIt in a greater tolerance
become pieces of evidence that can then be combined of such variations. The final fuizzy predicate is the
With the Dlrnpster-Shaf|er theory of evidence. The maximum of the individual functions generated for
outptit is a target identity, which may be none to each cluster. The weight associated with each fuzz'v
indicate an unknown target type. (Note: References 1 predicate is initialized to 0.1, a valte chosen to allow
through 3 provide a detailed description of matching aii increase (and decrease) by at least an order of
based on AMs, including a description of the magnitude.
Dcinpstcr-Shafcr theory of evidence.) Fuzzy predicates are constructed for each attribute

Uising the above approach, we constructed five of each part. Not all attributCs, however, are equally
AMs, one each for the exposed tank truck, the cam- eff'ective in discriminating targets fi'om clutter. IO
ouflagCd tank truck, the loaded logging truck, the determine which attributes arc cff'cctivecdiscriminants,
empty logging truck, and the truck cabs. The cabs we use a second phase of mnodel buihldiig called super-
were modeled through i separate AM because, in vised (liserniiatiw n / 'ng. In the process, weights
several cases, the frame boundary of the images associated with attributes that arc weakly discriminat-
had occluded the trailers. ing are decreased, while weights for attributes that are

Through experience, we learned that the AMs that strongly discriminating are increased. Whcthcr an at-
were more successful were generally more compli- tribute is discriminating or not is determined by indi-
cated. As the size and complexity of the AMs grew, viduall' reevaltating each attributte within tile AMs
however, it became apparent that we could not con- of' targets after an incorrect identification has been
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made. If a fuzzy predicate returned a high score that niques, this section will present the detection results
contributed to the error, then the associated attribute first, separate from the results of the overall system

is nondiscriminating and the corresponding weight is recognition performance.
decreased. For example, consider the response to an
FA in which some piece of clutter has been incorrectly Detection Performance
identified as a target. In the identification process, Each of the four FTC-based target detectors was tested
fuzzy predicates were evaluated for the different at- individually for a range of interest thresholds. Figure
tributes. If the score from a particular evaluation was 12 shows the probability of detection PI) plotted as a
greater than 0.5 (ambiguity), then that attribute con- function of the false detection (FD) rate for the four
tributed to the mistaken identity and is thus not implemented detectors. (Note: FD is distinct from
discriminatory; consequently, the corresponding FA, which is the false-alarm level for the overall
weight is decreased. On the other hand, if the score system.)

was less than 0.5, indicating that the attribute had For the tank-truck detectors, both exposed and
correctly denied the mistaken identity but was out- camouflaged, the detection performance was quite
voted by the other fuzzy predicates, then the associ- good. In both cases, P[) was around 0.7 at the thresh-
ated weight is increased. (Note: Reference 4 contains old level where the first FD occurred. Given the
specific equations and schedules for the weight ad- 17.13 km 2 of ground area covered by the dataset, the
justments, along with a more detailed description of one FD resulted in a rate of 0.058 FD/km2 . For a PI)
supervised discrimination learning.) of 1.0, the associated minimum FD rate was approxi-

mately 2.0 FD/km . The target detector for the loaded
Results logging truck performed slightly less well. Because the

Much of the innovation of the CMT version of shape of the vehicle changed with each load of logs,
XTRS is in the development of techniques for low- the detector's functional template had to be con-
level MI. To evaluate the effectiveness of these tech- structed with more fuzziness; i.e., the template had to

Cluster 1 Cluster 2 Outlier
Example values --- ee a* so * me s

1.0

0)

0.5

/

0.0
3.0 4.0 5.0 6.0 7.0

Length (m)

FIGURE 11. Automatic construction of a fuzzy predicate for the attribute LENGTH of the part node PART 1 of Figure 10(b).
The red dots at the top of the figure represent the population of length values from all PART Is in the example set. During
the construction of a fuzzy predicate, outlier (i.e., statistically inconsistent) values are discarded, and a cluster analysis is
performed to determine the number of clusters that might best explain variances in the remaining values. For each cluster,
an interval of maximum returned score (1.0) is then established between the minimum and maximum lengths of that cluster.
Outside this interval, the fuzzy-predicate curve for the cluster ramps down to 0.0 with a slope that is proportional to the
standard deviation ( of the cluster population multiolied by the recognition tolerance J3. The final fuzzy predicate is the
maximum of the individual functions generated for each cluster.
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FIGURE 12. Probability of detection . D plotted as a function of the false-detection rate

for the four target detectors. Each point along any of the curves shown is associated

with a particular value of the interest (or detection) threshold.

provide a greater tolerance for variations in shape. But example results for the loaded logging truck. The
the most difficult to represent as a fuinctional tr.n- probability densitV was COmpLuted as the percent of-all

plate was the empty logging truck, because of tile dttcctions fOund within each successive short Interval

small size of the vehice's trailer. With an elongate of `. rerest scores (0.016 in the range from 0.0 tL 1.0).

shape such as that of the tank truck, small tuncor- Most instances ofnatural clutter (mainlN trees and
rected distortions in the length of the target did not shrubs) tended to have interest scores around 0.65,

have a serious effect. With the empty logging truck, with no interest scores above 0.8. The population of
however, the rear axles of the vehicle are the only target interest scores (shown as red clots at the top of
reliably visible part of the trailer and, because this Figure 13) had scores ranging from 0.79 to 0.94.
portion of the truck is short relative to the overall Thus the detector for the loaded log',ing truck achieved
truck length, even a small distortion in the truck a perf'ect partition between targets and natural clutter
length can move the axles ahead or behind the patch (i.e., a threshold of'0.78 restited in 100% detection
of the functional template representing the axles. (oin- with no FDs). In contrast, maan-made obiects were a
seluentlV, the shape and appearance of' the empty more troublesome source of FDs because such objects
logging truck could not be defined as precisely as fort generated a fevw interest scores that were as high as
the other targets. Fortunately, scoring finctions call 0.9. lnuCLIded in tile high-scoring cultural objects were
be modified easily to adjust the degree of tolerance to other semi-trailer trucks, such as the deployed tank
variations in shape and appearance. Although tie truck, and stacks of logs similar in shape to the loads
detection rates for tile two logging-truck configura- carried by the logging trucks. The results for the other
tions were lower for a given I') rate than for the tank target detectors were roughly the same as that for the
truck, the performance was still respectable. loaded logging truck with the detectors for the tank

For a better understanding of 'the sources of FIs, truck providing a slightly better partitonn between
tile clutter data were divided into natural and man- targets and clutter, and the detector for tile empty
made (cultural) clutter. Aviv imiage containing a large, logging truck a slightly wo:-se partition.

man-made object (e.g., a building, non-target ve- It can be argued that iogging trucks provide more
hides, or stacks of' logs) was placed in the cultural- stressful testing than would arise from an actual CMT
clutter group. Each of the target detectors was then application. Because missile launchers are large and
applied to both divisions of the data. Figure 13 shows nonarticulated, their detection is less vulnerable to
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FIGURE 13. Distributions of interest (or detection) scores for natural and man-made
(cultural) clutter for the loaded-' ,ýqing-truck target detector. The red dots at the top of

the figure indicate the interest scores for instances of the deployed loaded logging

trucks. At an interest (or detc-ction) threshold of about 0.78, the loaded-logging-truck
target detector achieves perfect discrimination between deployed loaded logging trucks

and natural clutter. There is no threshold, however, that would yield a perfect discrimina-
tion between these targets and cultural clutter.

the effects of distortion. Also. (M'ilS have only three tudinal) axis either perpendicular or parallMl to the

basic shape variations: missile down for transport, tree line. Figure 14 summarizes the results of the

missile erected for launch, and without a missile fol- experimncnt with the target perpendicular to the tree

lowing latunch. These three variations have precise line for target occlusions of 2"., 36%, and 6(%.

known shapes, in contrast to the amorphous nature The left frames in each row are range imagcs of a

of log loads, tank truck that has been synthetically placed perpen-

dicular to the trcc line. l'he center framecs show the
c. c t it'n rim'llts location and orientation of the best niatch for the

()ne of the prinmary rnotivations for the development tank-truck fuinctional template in the iniages, along

ofI FT( was to overcomc the way in which occlusion with the corresponding interest scores. The pixels

disrupted the more !raditional shape-marching tcch- themselves indicate the scores returned from indi-

tDiqusC. Various attempts to design an NII approach vidual scoring fuinctions fo r each location on the tcm-

for detection and extraction failed with targets that plate: black, white, and gray pixels represent 0.0). 1 .0,
had as little as 5 1,o of their surface areas occluded and intermediate values, respectivelv. Thc right framcs

by foliage. With funtictonal templates. however, show the results of'recognition based on the tnato.hii ug

all targets ucould be dctcote.d rcadisy without mu tchII off the decoriposcd target wvi th A,-Ai of the targets. It

dhallcngc. should be noted that otcludCd targets wcrc inludCd
Io cplorc the limitations of' F.C in detecting in the example set used to build the ANIs.

targcts ctltudcd by foliagc, wC designed cxpcrincntis The ftirst row of Figure 1-i sho\s that a target tlar
inl which tar that wIre ,t ou fo one mi agC is almost completely CxposCd (only 2 , o LLtisiot)

svrc positioCed aklotng I tree line within another iMl- results in a1 strong intcrest sorc Atnd correct r.cogri-

.,gc. Begiiniig at locatio•ns \.licrc the targct wais coni- tioti. •or I targt occlusion of ", the intcrcst s•or:

plctcl. utiob,,urcti , tilth target was mnrenftenAllV nis ed .,, barel aibo\c tihe.- interest threhI id Of l).-S, but he

tradeitr thc foliage. ss ih the vcehi lc',ms tijr (i.e.. ohgmg- target is rco.")ni/Cd torrctls noncthelcss. FIor nll ocL-
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FIGURE 14. Summary of foliage occlusion experiment for a tank truck that has been syntheti-

cally positioned perpendicular to a tree line. The top, middle, and bottom rows are for the

target with 20 o, 36'.. and 66'., respectively, of its surface area occluded by foliage. The left
frames are range (height above ground) images, the center frames indicate the locations

and orientations corresponding to the highest interest scores (indicated in the frames), and

the right frames show the final AM-based recognition results.

FIGURE 15. Stinimai ot folia.ge occlusion experimenlt similar to tI 'dt Of Fig nrc 14. except the

tanlk truick has bo(•n Ipositioiled p~airile to the tr(•e in~e.
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clusion of 66%, the interest score is only 0.65, which

is below the interest threshold of 0.75. Consequently, (ve'aI/ Sstelm lrofiwrmtne

this target is not detected and therefore not processed Although FTC can provide high detection rates ,,, ith

by the matching module. (The UNKNOWN idcnti- fiew FIs, the fewer FlDs the better. Because FT[L

fication in the figure is the result of our dropping the bases its interest scores solely on how w\Cll image

interest threshold to below 0.63.) And yet, as shown values compare to expectations at difterent locations
in the center framec, the best match produced by FTC on the kernel, it doc s not exploit the known relatiOil-

correctly determines the location and orientation of ships of target parts. We have relied on the technique

the target, despite the target's being more than half ofdAs as a means of modeling such additional infor-
occluded. We have obtained similar results for the mation and, by so doing, have provided the means for

case in which the major axis of the tank truck is rejecting FI)s and discriminating between multiple,

parallel to the tree line, as shown in Figure 15. simnilarlY shaped target classes.
For the combined data of perpendicular and paral- For initial testing, we used an interest threshold of

lel target placements, Figure 16 contains a plot of 0.75 to detect clusters of high interest values in the

interest score as a function of percent occlusion. The Maine dataset. A total of 492 detections resulted,
figLurc shows that the decrease in interest score as a including all 63 deployed targets. These detected tar-

function of percent occlusion conforms to an ex- gets were then extracted, characterized, and matched

pected linear relationship: performance degrades against AMs, as describid earlier.
gradually as occlusion increases, without any intervals Initially, when we built the ANIs we used ,0')o of

of rapid degradation. At an interest threshold of 0.75, the targets as examples and a recognition tolerance 1;
targets Occluded up to around 36% are detected and of 0.3. The remaining targets that were classified as

recognized. Lowering the threshold would permit the UNKNOWN (i.e.. like any' modeled

detection and recognition of targets with an even target) were subsequently added to the example set as
hiher percent of occlusion, but would also increase we refined the models. Eventually, 80% of the targets

the FID rate. were included in the example set to reach a recogni-
tion performance of 100%. No supervised learning of

1.0 i I weights was done for this test. Under these condi-
S-Correct -- lrecognition tons, there were no [As in all 17.]3 kln- (2303

0.9 image pairs) of data.
The above results include some targets deployed in

"the open, but they also include a number of very
o0.8 - i difficult cases. Figure 17 shows photographs and a

------. k * map of a deployment in which the empty logging

•Q ftruck and the canmt, flaged tank truck were placed onS0.7'-o
- Detection ,, a nairow dirt road with tall trees on either side. For

"threshold the eniptv logging truck, Figure 18 contains the range

0.6 i.and intensity images, an interest image nighlighting
"pixels having above-threshold interest values and show-

0.5 ing the selected windows, and an image showing the

0.5 final recognition results. "[he truck, visible in the
Percent occlusion lower left corner, has been correctlh recognized. AnPercent occlusion 1

F[), triggered hi a collection of shrubs having rouglhly
FIGURE 16. Summary of results for the experiments de- the size and spacing ofthe parts of-the empty logging

scribed in Figures 14 and 15. Note that at the detection
truck, was correctly rejected during AM-based inatch-

interest threshold of 0,75, the system is able to detect and r d -
recognize targets with up to 360o of their surface areas ing. Figure 19 shoxvs the results for tle camouflaged

occluded by foliage, tank truck of Figure 17. Note that in this case the
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FIGURE 17. Photogrnaphs and deployment miap of -hidden targets used in the Portage, Maine, experiments.
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FIGURE 18. Detection and recognition resu~lts for the I idclen empty logging truck of Figure

17. The truck is visible in the lower left corner of the images. A false detection. triggei ed by
a collection of shrubs, has been correctly rejected as UNKNOWN.

FI(I1' 17,

FIGURE 19. Dtowction iind ut(, jnitino) 1esiilts fni the liddon arooimLlahoilje tank t1I iik Of
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FIGURE 20. Detectiorr and ret ognitrol IPS~rl~tS for thrre empt~y logJti rig trutcks thot vail er[ot

pal t of tile'fist (fefloyrriert. (Note: The rirrapes also contain other vefrirles, rIrai(rr orii( l koip

ti ( k'-, arnd I ioad -rrobile crane, atl the topl ceirter. Also note that roi the mrairpe rirriq till-

hoIlni(II~ III il( tietipr et Coin er fras Irttor ect hieitgft V,1tlre5 diue to air ar tifat t ill rsýtrnnrrItrnrr

the( hePir~frt Of loM 11 (1r01.rr1d for laige (tirfcts.) Twot of thre three tim od.- weiterdr hirltv4
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dataset used to train a svstem is the same set used for we built the AMs at progressively larger values of
testing. To a certain extent, we addressed this criti- /• ranging from 0.1 to 7.0. For each I) value, the

cism bY dividing our available data into two sets, one probability of correct recognition I'l was plotted as a
for training, the other for testing. Because at most function of the FA rate. Fig'ure 23 shows the results.
only 50% of the targets werc to be used in the cx- At the value of/'/ in which the first FA occurs, the I'll
ample training set, we assumed that a large recogni- was 0.44. For a 1) of 0.93, the FA rate was 1.42
tion tolerance/; would be required to achieve a 1) of FA/kn-. Two of the targ'ets were not recog'nized
1.0. With a large recognition tolerance, we also ex- (i.e., classification UNKNOWN) even with /; set

pectcd that the FA rate might be high. Consequently, to 7.0. At some higher value of fi, we do expect to
the supervised learning of weights was used to sup- achieve a PR of 1 .0, but we did not attempt to find
press the FAs. that particular fi value. In this test, as well as in the

For training, wC built the AMs with a high i value previously described tests, no targets were mislabeled
of' 5.0 and an example set consisting of 1165 image as another target identity.
pairs (range and intensity) containing 28 targets. AM Out of a total of 63 targets, only 55 were used: 28
weights wverc all initialized to 0. 1.'lb establish a baseline for training and 27 for testing. The reason for this
FA rate, we did not use supervised disciimination intentional omission of eight targets was that there
learning to process the training data. The high w3 of were only four images of the tank truck in the open

5.0 and a low interest threshold of 0.72 were selected and four images of an empty logging truck with the
so that enough FAs would be generated to promote trailer comnpletely' occluded by the frame boundary of
opportunities for learning. The number of FAs Under the image. With onl' two examples of a target for
these conditions was 37 (4.3 FA/kn2). Next, super- training, the resulting ANIs were too restrictive to
vised discrimination learning was initiated and, with recognize any targets other than the two training
each complete pass through the training data, the examples. This finding highlights how the building of
nunher of FAs generated during that pass was re- robust AMs depends on the proper selection of a
corded. [igure 22 shows the results of 14 passes training set. As with any learning system, a realistic
through the training data. Note that the number of and representative sampling of variations of object
FAs dropped from 37 to 21 during the first pass and appearance is necessary to achieve robust performance.
stabilized to an average of 19 FAs (2.2 t-A/kin2) by Conclusions

the fuirth pass.
After the completion of training, testing was done The Experimental Target Recognition System (XTRS)

on 27 targets in 1134 image pairs covering 8.4 kim of provides a framework for applying machine intelli-
ground area. Using the wcvihts learned from training, gence (Mil) techniques to the task ofaautomatic target

recognition (ATR). Based largely on aspects of fuzzy
40 I set theory, these MI techniques enable the representa-

tion of uncertainties and known variabilities in target

_ 30 appearance.
With rule-based experts and libraries of functions

Zn20 and data structures, XTRS can be organized to adapt
"0 0 6 0 automatically to environmental context and to

S10 reconfigurc the search for alternative targets Using

Smultiple target detectors, XVRS can look simulta-
z

0 I I I I I I neotisly for different variations ;n target shape. The
0 2 4 6 8 10 12 14 outputs of all target detectors arc expressed as interest

Number of passes through training data images, permitting the fusion of all sources of cvi-

FIGURE 22. Learning curve showing the decrease in false denice into a single spatial map. 1)espite the apparent

i1larms with training. complexity of XTRS, system performance can be con-
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1.0 I I I process of abstra.-tion necessarily reduces the amount
of information available for decision making, thus

0.8 handicapping an observer, no matter how intelligent.
I0bols for knowledge-based signal processing and pixel-

0.6 lcvel accumulation of evidence provide the intelligent
means of usi iig object- and context-dependent knowl-

04 I edge to guide the extraction of information directly

10-1 100 101 101 from raw image data without the need for abstrac-

False alarms/km 2  tion. In particular, functional template correlation
(FTC) allows the construction of generalized matched

FIGURE 23. Probability of correct recognition PR as a func- filters that encode knowledge of the physics of a
tion of the false-alarm rate. Each point along the curve detection problem. Customized operations constructed
corresponds to a particular value of the recognition toler- i
ance parameter 3. with FTC are generally more powerful (i.e., more

discriminating) than comparable traditional signal
trolled effectively with only two tunable parameters: pro2cssing operations. In ATR versions of XTRS, we
the interest threshold for controlling the output of have used FTC as a one-step three-dimensional target
low-level detection and the recognition tolerance for recognizer. For other applications, we have developed
controlling the output of high-level matching based knowledge-based fuzzy variations of standard image
on appearance models (AM). processing operations, including thin-line detection,

XTRS uses AMs to model how targets and their smoothing operations, basic mathematical morphol-
constituent parts appear in sensor imagery, thus pro- og, (MM) operations, and pattern matching.
viding an alternative to other classifiers, including The need fbr FTC arose frora a perceived inad-

those based on neural network, statistical, and other equacy of the standard techniques of shape analysis.
model-based approaches. Unlike other model-based Although MM worked very well for unobscured tar-
approaches that encode the three-dimensional struc- gets, we could not devise a sequence of MM opera-
ture of an object, AMs define the observable appear- tions that would reliably detect and extract targets in
ance of targets in specific sensor data within the con- high-clutter environments, especially when the target
straints of the likely target orientations. AMs provide was partially occluded. We believe that our failure was

a more controllable representation than neural net- due in part to the all-or-nothing nature of MM op-
works. Because knowledge is represented in neural erations [18]. We have also investigated the use of
networks as a diffuse population of weights, it is normalized cross-correlation, the other commonly used
difficult to identify which image features are being tool for shape analysis. In its favor, cross-coriclation
used. Nor only are the attributes and weights of AMs does provide a variable degree of match that can be
easy to interpret, they can be modified by a user with translated easily to interest values. But the matches
predictable effects on recognition performance. Neu- generated by cross-correlation are too literal in that
ral networks have gained in popularity as classifiers the interest scores are based on very specific, inflexible
principally because of their ability to learn and en- patterns of image values.

code discriminants automatically. As we have shown The repetitive evaluation of all scoring functions in
in this article, the automatic learning of class dis- a functional template-for all orientations for each
criminants is also possible with AMs, but in a repre- pixel location-sounds computationally prohibitive.
scntation that is more amenable to understanding But the process becomes feasib' when the input im-
and selective editing. age values are scaled to some integer range (e.g., 0 to

Other techniques developed for XTRS embody 255) and the scoring functions arc implemented as a
what we call l:)w-level Mi. Most existing Mi tech- precomputed two-dimensional lookup table that is

niques used in computer vision rely on a preliminary indexed by the scoring-finction numbers and the
abstraction of raw data into a symbolic form. But the integer image values. The use of such a lookup table is
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Table 1. Performance of Prototype System

Experiment

2 3

Training Testing

Number of targets 63 69* 28 27
Ground area (km 2) 17.13 17.13 8.6 8.4

Detection threshold 0.75 0.72 0.72 0.75
Number of detections 492 1173 656 342

Number of targets in 50 50 28

AM example set

Recognition tolerance 0.3 1.7 5.0 4.5

% correct recognition 100% 100% 100% 93%
FAs/km2  0.0 1.7 2.2** 1.4

Includes six empty logging trucks not intentionally deployed
After discrimination learning

generally Ifaster than multiplication, making FTC 1N0(% correct target recognition in the available data
evaluation quicker than cross-correlation. with no mislabelings and no false alarms. It is impor-

low-level MI also allows XTRS to delay the appli- tant to note that the AMs are flexible and can be
cation of thresholds. Instead of applying thresholds generalized to broader classes of vehicles by the ma-
either to a single image consisting of raw data or to nipulation of a single recognition tolerance. Experi-
the output of some simple transformation of the raw ment 2 demonstrates this flexibility and, in particular,

data, we can apply the thresholds to maps of interest the capability for generalization by Increasing the rec-
containing evidence that has been extracted from a ognition tolerances. Six empty logging trucks were
variety of sources. found in the dataset that were somewhat different

Unlike the AMs, the FTC-based target detectors from the one logging truck that was intentionally
were constructed and tuned manually. The develop- deployed. These six were appropriately rejected as
mcnt of a useful, operational ATR system that is able clutter in experiment I . Suppose, however, that the
to adapt swiftly to different targets and mission see- additional six trucks were to be included in a broader
narios requires a mechanism for constructing func- class of empty logging trucks. By changing just the
tional templates automatically. We have developed recognition tolerance from 0.3 to 1.7 in experiment
methods for building functional templates from sta- 2, the system was able to recognize the six trucks as
tistics accumulated from example targets, but these empty logging trucks. Of course, the cost of general-
methods have not yet been implemented. Functional izing all models in this manner was that the FA rate
templates might also be constructed by using the increased from 0.0 to 1.7 FA/kr 2 . Experiment 3
emerging techniques of genetic programming, shows that AMs constructed from more limited train-

The success of our approach to ATR is indicated ing sets can be used to recognize targets with reason-
by the overall system performance of the prototype able reliability in a separate test set. The training sets
system, as summarized in Thble 1. In experiment 1, in were limited in size and did not provide a good repre-
which we used strict tolerances for the automatic sentative sampling of vehicle appearances. Conse-
construction of the target AMs, we were able to achieve "uently, AMs were constructed with large recognition
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tolerances in order to achieve high detection rates.
The resulting elevated false-alarm rate was suppressedREF REN C ES
by roughly 50% through the use of'supervised dis-REF REN C ES
crimination learning. D)espite these limitations, rea-
sonably good performance was evident in the separate I. j.c- Verl%' and R.L. [)elanov, "Apptearan...>Model-Based Rep-

testdataet.resentation and Matching of 3-1) Objects," Prot. 3rd Intl.
test uatset. (2.' on Computer Vision (Osa-ka. Japan, 4-' D~ec. 1990)),

In contrast, without the techniques of low-level p. 248.

MI and the automatic construction of complex AMs, 2. J.G. Verly. B. Williams, and RIL. Delanoy. "Model-Based
pattern Recognition," U.S. patent No. 5.1I23,05"' (June 1992).

we were unable to construct an ATR system for this 3. J.G. VerlY, B. Williamns. and R.L lDelanoY. prisare corn-

application anywhere near as accurate, flexible, or nuiain
4. RJ.. DelanoY , J.( . Verb', and D)1. D~udgeon, "Automiaticrobust as the one described in this article [181. Of' Building and Supervised [Discrimnination Learning ot Appear.

course, some credit for the performance of the system ance Models of-I-) Objects." SPIEI 708. 949 (1992).

Must go to the quality of the sensor images used. But 5. RI.L. 1)elanoy, .I Vicrly and 1)1. D)udgeon, 'Functtional
Templates and Their ApplicaItion to 3-1) Object Recogni-

images of good quality do not necessarily guarantee tion," Proc. Intl. ( onf on A, ou.tics. .S~eech, and Signal Proce,-

reliable detection performance. Even with an image ing(IAS) San Francisco, 2326 Afar. 1992. p. !II- UIA1.
of excellent quality, cnel ntand Clutter can make 6. R.I-. lDelanov and IJG (,\en'y, " ornrputer Apparatus and

concelmentMethod for fuzzy I rmpl ite Shape Matching Using a Scoring
target detection a challenging problem. Function," U.S. patent No. 5,222,15S (June 1993).

So far, XTRS has been applied to two other ATR 7.R.I.. Delanoy, J.G. Verl.%, and I).F. IDudgeon. "Pixel- I cel
Fusion Using Interest Imiages." 1ecloiical Report 9-9. MIT

problems: the recognition of armored vehicles both in Lincoln Laboratory (26 Apr. 1993).

forward-looking laser radar images [8] and in fully 8. I.G. Verl ,Y, R.L. Delano',, and l).F. IDudgeon, "Machine In-

polarimetric synthetic-aperture radar images 191. Bttt telligence TIechnology fior Autornatic larget Recognition,"
[inc. L~ab. J 2, 277 (1989).

XTRS provides the means of solving a more general 9. J.G. Verly, R.L. IDelanov, and C. 1-azotr. "P'rinciples and
class of object-detection problems. In addition to its ,vlaino nAtmtcTre Rcgionc'tern for

Synthetic Aperture lmiagery Based on the Use ol Funcinal
use in recognizing military targets. XTRS has been Iflemplatcs." 8PIt E 1960 (1993), to be published.
applied successfully to the task of detecting and track- 10. [CG. Verly. RI.. IDelanoy, and I).F. [)udgeon, "Model-Based

ing hazardous weather phenomena in Doppler S ,",stem f'or Automnatic 'arget Recognition front Forward-lo0ok-
ing la-ser-Radar Imnagery.' Opt. bi__g. 31, 25/40 (1992).

welither radars [1It1. RUI. Delanov and S.W. Iroxel. "Machine Intelligent C4ost
Front Detection.' in this issue.
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Machine Intelligent
Gust Front Detection
Richard L. Delanoy and Seth W Troxel

0 Techniques of low-level machine intelligence, originally developed at Lincoln
Laboratory to recognize military ground vehicles obscured by camouflage and
foliage, are being used to detect gust fronts in Doppler weather radar imagery.
This Machine Intelligent Gust Front Algorithm (MIGFA) is part of a suite of

hazardous-weather-detection functions being developed under contract with the

Federal Aviation Administration. Initially developed for use with the latest-
generation Airport Surveillance Radar equipped with a wind shear processor
(ASR-9 WSP), MIGFA was deployed for operational testing in Orlando,
Florida, during the summer of 1992. MIGFA has demonstrated levels of

detection performance that have not only markedly exceeded the capabilities

of existing gust front algorithms, but are competitive with human

interpreters.

C 1st fronts generated by thunderstorms can of important data), a failure to use all of the relevant

seriously affect the safety and efficiency of information available in the input data, and the in-

airport operations. Lincoln Laboratory, Un- effective use of knowledge regarding the behavior
dcr contract with the Federal Aviation Administra- or appearance of gust fronts under different

non (FAA), has had a significant role in the develop- circumstances.
ment of two Doppler radar systems that are capable Given clear, unambiguous radar gust front signa-

of detecting low-altitude wind shears, including gust tures, existing detection algorithms perform reason-
fronts, in the airport terminal control area. These ably well. The challenge is in constructing algorithms

systems are the Terminal Doppler Weather Radar that can handle the marginally detectable ambiguous
(TDWR) and the latest-generation Airport Surveil- cases. In such cases, various factors must be consid-

lance Radar enhanced with a wind shear processor ered. For example, gust fronts can be obscured by
(ASR-9 WSP). large areas of precipitation, or gust front signatures

By examining images generated by these radars, can disappear in Doppler velocity images whenever

experienced human observers can reliably detect and the Doppler viewing angle is perpendicular to the

track gust fronts. But the development of automated direction of motion. Furthermore, gust fronts can be
gust front detection algorithms having sufficiently mimicked by other natural phenomena, such as flocks

high detection rates with few false alarms has been of birds, clouds of dust stirred up at construction
elusive. The gap between human and computer per- sites, low-intensity rain, and ground clutter. And gust
formance is due to several limitations of the detection fronts can have very low radar cross-section densities,

algorithms. These limitations include the lack of means sometimes below the sensitivity of the radar system.
for handling and maintaining weak, ambiguous, and The preceding paragraph should sound familiar to

contradictory evidence, the use of multiple sequcn- those involved in the development of automatic tar-
tially applied thresholds for object discrimination (such get recognition (ATR) systems, for the issues are basi-

thresholds can inadvertently result ill the discarding cally the same. In addition to the continual trade-off
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However, the use of machine intclligCnLc (0111 for
the classification process leads to a problemn. With the

application of a detection threshold, a significant
amlount lif infirniation is discarded, inllLidinn thosc

Gust front object signatures which arc weak or ambiguous. Our
belief is that Increased detction01 I bil)[1s' Can be
achieved by applying machine intelligc c tc.hniqucs
prior to the application of detection thresholds.

A framework for applying machine intelligence4 techniques at the earliest levels 0 1 signal (image) pro-

Downdraft cessing is provided by the Lxperimental larget Recog-
nition System (XTRS) I 1, a general-purposc ma-

FIGURE 1. Thunderstorm downdraft and resulting gust chine intelligence approach to AIR developed at
front. The cool outflow beneath a thunderstorm spreads Lincoln Laboratory. Specific techniques of knOl-
out in all directions. The leading edge, where the cool
outflow and the warmer ambient air converge, is called edge-based signal processing, fuzzy set thcory, and
the gust front. pixel-level maps of spatial evidence are all part of this

approach. Based on XTRS, a Machtic Intelligent

Gust Frtont Algorithm ( I(; FA) has been constructed
between detection rates and nu, mbers of false alarms, for use with both TI)WR and ASR-9 WSIP imagery.
the issues f'(r gust front detection arc Of the two radar systems, the ASR-9 presents the
1. obscuration and camouflage, greatest challenge to gust front detection because of
2. sensor limitations, its lower sensitivity and less reliable l)oppler measure-
3. clutter and decoys, and ments in clear air. Thus, this article will foCLus (i1 thc
4. stealth. ASR-9 WSP version of MI(;F2A to demonstrate best

Not surprisingly, the overall design of existing gust the algorithm's effectiveness.
front detection algorithms is similar to that of most
A'M'R svstems. This traditional design is characterized Gust Fronts

by a hierarchy of modules, typically called detection, An intense thunder,'torni downdraft can arise from
extraction (or discrimination), and classification. Tlhe variouIs processes stich as evaporative cooling and fric-
detection process is essentially the application of some tional drag between water droplets and the air. Upon
threshold that has been chosen to maximize the prob- impact with the ground, the downdraft is deflected
ability of detection at soime acceptable level of false horizontally (Figure 1), producing a local region of
detections. Where signals arc found that are above divergent winds. The downdraft feccds an outfoiiw oif
threshold, fc:,turcs are extracted, producing an ab- outwardly expanding cool air. At the leading edge of
straction, or symbolic representation, of the raw data. the outflow exists a boundary where cool outflow air
(;iven the set of extracted features, a signal is then collides (converges) with the warmer ambient air.
classified as either one of the object types being sought This leading-edge boundary, called a gust front, can
or as clutter. In both the existing gust front detection grow to be many kilometers long and can propagate
algorithms and the traditional AIR systems, dctec- far away from the generating storm.
tion is generally unsophisticated: the threshold is ThlC turbulence within a gust front can be sevcrc
applied either to raw radar data or to a simple trans- enough to present a danger to aircraft during takeoff
f'ormation (such as a matched filtering) of the raw and landing. And, because the prevailing winds be-
data. Sophisticated machine intelligence techniques hind a gust front can persist for a long timc, the
are generally applied in the form of classifiers. e.g., by passage of a gust front over an airport often nCCCsi-
the use iif neural network, statistical, or model-based tates a change of active runway. When unanticipated,
classifiers, a gust ftrnt can delay airport operations as aircraft are
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reroulted to a different runway. Aside froni issues ot' (',lst fronts can be detected in I )oppler radar HIm-

Cost and( i nconx cnieccc delayvs canl Increase the risk, .agcr on thle basis of threc phYsical proertes oc
of potentially 1"Ital hum1nan errors as the distance irv convergcncc, thin lines, Ind niotion. 1FigureF 2
betweeni aircraft that ire taking ofl' or lan1ding dc- showýs a typic.al guist front in both TI')\\'R anid A-SR-L)
creases anld the wvork load onl air traffic controllers WSIP imlages.
Increases. With suf rcictnt warn i ng thoLw'h1, con trol- The air with in and behind a "List front Lonver,,es
lers can Incorporate in t heir plans a change in actri ye with the anibien t air ahead of' the gust If-ront. InI a
runwayI at1 thle ant1icipated1 tiII mof a gust front's arrival, Doppler V'elocity image. th 1sa t it Is bevbea

thereby nin i milzing the hlazairds and costs associated boundary between regions of' conserging velocities.
With delays. When viewecd along, a single radial, the convergence

Reflectivity thin-line signature Velocity-convergence signature

(a)

(b)

Reflectivity thin-line signature Velocity-variance signature

FIGURE 2. An example gust front in (a) TDWAR and (b) ASR-9 WSP images. The left radar plots are reflectivity images with
units in dBZ. The right radar plots are Doppler images with units in in/sec. The different signatures (see main text) ot thle
gust front hav-a been indicated by a human interpreter.
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signature is characterized by a relatively sharp de- Velcities-convergence zone
crease in radial lDoppler values with distance (Figure

3). Because Doppler radars cald measure onlr the
component of' tile wind that is directed along the

beam, Doppler velocity nmeasurements cal Often Ll- l 0
derestlinatc tile true wind speed. In the extreme, the >•
convergence signature of a gust front disappears corn-

pletely when tile direction of motion is perpendicular o 0
tM the radar beamn azimuth. The TDWR velocity

image shown in Figure 2(a) demonstrates this prob-
lem. In the figure. the portion of the front closest to

the radar site has a direction of motion that is nearly Range

radially aligned, resuilting in a pronounced conver- FIGURE 3. Example velocity-convergence signature asso-

gent boundary for that area. However, at the ends of ciated with a gust front.

the gust front, where the direction of motion is more

azimuthal, the boundary is more difficult to detect.
The thin-line signature is generally thought to be thin line. Signatures that do not move are either not

produced by the concentration of scatterers (dust, gust fronts-e.g., they could be false alarms fronm
insects, rain droplets) along the leading edge of the range-ambiguous echoes (discussed in the subsection
thtunderstorm outflow. Some gust fronts produce a "Feature Detection"), edges of storm regions, or ground

distinctive cloud formation along the gust front, which clutter-or they are gust fronts that are not opera-
can also contribute to the thin-line reflectivity. The tionally significant. Within limits, gust fronts tcnd to
thin line varies in width but seldom exceeds 3 kmi. move uniformly as outwardly expanding curved

"Typical maiximum reflectivities reported by the ASR- boundaries; i.e., the propagation speed tends to be

9 along gust fronts are in the range of 10 to 20 dBZ. consistent along the front's length and across time. Of

But significant portions of many thin lines can have course, when gust fronts collide, the motion may
reflectivities as low as -5 dBZ, which is near or below become more erratic.
the threshold of detectability for the ASR-9. (Note: If these signatures were 100% reliable, detecti( a

The basic unit of measurement for radar reflectivity is would be a trivial task. For sonme gust fronts, however,

dBZ. Reflectivities of 50 dBZ or more are typical of one or more signatures may be weak, anmbiguous, or
intense thunderstorms with heavy rain. Background entirely absent. For example, convergence signatures

typically has reflectivity values between -15 and 0 disappear when the radar beam is perpendicular to
dBZ.) Because of ground-clutter obscuration, the qual- the wind velocity. Reflectivity thin lines and thin-line

ity of a thin-line signature often degrades at close motion can disappear when a gust front is obscured
range, and the signature can even vanish as the gust by storm regions. TO complicate matters fuirther, none

front passes over the radar. As the front moves out of of these signatures are unique to gust fronts. Vertical

the cluttered region, the signature often reestablishes shears, often present in severe thunderstorms, can

itself. This type of degradation is especially trouble- bias low-altitude velocity estimates, producing appar-
sonic for the ASR-9 because of the radar's on-airport ent convergence signatures. Range-ambiguous ech-

location, which makes it more prone to detection loss oes, ground clutter, flocks of birds, and elongated
when a gust front is affectinag the airport. patches of low-intensity precipitation can all appear

A final key gust front signature is motion. When as reflectivity thin lines. Motion can be associated

sequential radar scans are compared, convergence and with anything (e.g., clouds or airborne dust) that

thin-line signatures of a gust front will move con- follows the ambient wind. In short, each signature

spicutously in a direction perpendicular to the orienta- can bc missing and each signature can be mimicked
tion of the convergence boundary and reflectivity by other observable phenomena. Consequently, suc-
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ccssful discrimination requires knowledge of the cir- WSP velocity images as bands of low-variance l)op-
cumstances for which these signatures arc reliable as pier values, with high variance in the low signal-to-
well as knowledge of gust front behavior. Only by noise regions ahead and behind the gust front. lhis
weighing the quality of' sev,'ral signatures simulta- velocity-variance thin line is an alternative signature
nieouslv can an automated system detect gust fronts used in the ASR-9 WSP version of MIG [A. In addi-
with near human performance. tion, implicit zones of convergence can be identified.

The task is difficult Cnou1gh with TL)WR data. Doppler values within the gust front thin line are
And vet theIDWR is a pencil-beam radar, designed used to estimate winds behind the gust front. The
for weather sensing, with enough sensitivity to gener- environmental low-level wind velocity ahead of' the
ate reliable Doppler values in relatively clear air and storm can be measured by some other nmeans--for
enough resolution in elevation to provide three- example, from a network of anemometers at the
dimensional images of weather phenomena. In con- airport. A comparison of these two .vind-velocirv
trast, the ASR-9 is a surveillance radar that was estimates can be used to confirm that convergence
not originally intended for weather imagin. With exists somewhere between the gu"st front and the

a fan-beam design, the ASR-9 vertically integrates anenmometer site.
signals into a single two-dimensional representation.
Because the transmitted energy is distributed over a Background

'ider arc of elevation, the energy returned from a Automated radar gust front detection algorithms hlave
low-altitude, low-reflectivity gust front will be small been under developmelnt and evolution for almost ten
relative to the energy filling the remainder of the years. H. Uvcda and I). Zrnik [21 first described an
sample volume. With this reduced sensitivity, gust automated detection algorithm, developed for the Next
front detection is much more difficult. Almosr a]] Generation •eatrler Radar (NEXRAL)), that was
convergence signattires arc eliminated for the ASR-9 based solely on detecting velocity convergence along
because the Doppler values are unreliable since the radials. The algorithm was successfil in locating and
reflectivitv returnis from clear air are below the thresh- tracking the strong gust fronts that comilonlnh occur
old of detectability for the radar. Even for cases in in Oklahoma during the sprinl.
which gust fronts pass through regions of high An improved version of the initial algorithm re-
reflectivity, convergence cainot be used reliably for duces false alarms by requiring vertical association of
gust front detection. For example, the signal contri- gust front ,;gnaturcs from two different low-altitudc
bUtiOn from overhanging precipitation near the edges elevation scans. The improved algorithm, known as
of storms can bias the low-level wind-velocity esti- the (;ust Front Detection Algorithm (GFI)A), also
mate when there is vertical wind shear. Without con- incorporates a technique for estimating horizontal
vergence signatures, thin line and thin-line motion winds ahead and behind detected guist fronts [3. 4].
become the primary signatuires for detecting gust fronts As with its predecessor, (FDA detects velocity coin-
in ASR-9 WSP imagery. InI the example ASR-9 WSP vergence along radials. GFDA is the algorithm cur-
reflectivity inmage of Figure 2(b), the gust front is rently intended for use in the initial operational de-
visible. But note that while the TDWR thin line is ployment of TDWR systeims.
quite strong, the ASR-9 WSP thin line shows less Briefly described, GFI)A begins with a scardl iIl
contrast, is somewhat morc fragmented, and does not each radial for runs, or segments, of decreasing radial
extend as far as is apparent in thie TI)WR data. velocity, indicating convergent shear. Segments in

Although a convergence signature is missing from which the maximunl shear exceeds a predetermined
the ASR-9 WSP velocity image of Figure 2, the guist threshold are logically grouped into features on the
front is still visible. The accuracy of velocity estima- basis of end-point-proximity and segnlent-overlap
tions degrades markedly over the range of signal-to- tests. .. he f.attirc attribtes are then tested against a
noise values associated with low reflcctivity rettirnis. inumber of thresholds and are kept, discarded, or
For this reason, gust fronts are observable in ASR-9 combined witli other features. After separately pro-
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cessing each of the two V)ull-circle scans from different human interpretations of the same images used as
altitudes, the algorithm tests for vertical continuity of input to the algorithm. The discrepancy between hu-
the features between the scans. Features that exhibit man and AGFA performance appears to be partially
vertical continuityand that exceed a minimum-length due to AGFA's not making full use of a variety of
threshold are declared to be gust fronts. The reported additional information that is available in the ASR-9
location of the detected gust front is determined by WSP data, including velocity thin lines and thin-line
fitting a curved line through the peak shear of each motion. Moreover, both GFDA and AGFA rely on
segment in the gust front feature. Sequential detec- sequentially applied thresholds to discriminate gust
tions are associated over time to build detection histo- fronts from background. When the relevant signals
ties for each gust front upon which propagation speeds are weak or ambiguous, the use of thresholds in the
are estimated and forecasts generated. early stages of processing can result in the elimination

Lincoln Laboratory, in conjunction with the Na- of potentially relevant information, thus setting un-
tional Severe Storm Laboratory (NSSL), has since necessary limits on detection performance. GFDA
developed the Advanced Gut Front Algorithm and AGFA also rely on one-dimensional signal pro-
(AGFA) [5, 6], which contains several enhancements, cessing operations to locate gust fronts. The extrac-
including reflectivity thin-line detection. AGFA de- tion of chains of points across the second dimension
tects thin lines by finding local maxima of reflectivity is done at a higher, heuristic level of processing. In
values that are consistent with the widths and intensi- contrr:, t, two-dimensional signal processing opera-
ties associated with gust fronts. Thin-line segments tions can directly establish the shape of gust fronts
are generated twice: once by constructing segments without relying on heuristics. Finaly, these early gust
over all range gates along a radial and once by con- front algorithms have no systematic means of condi-
structing segments across radials along arcs of con- tionally fusing information from various sources by
stant range. The final thin-line featurc; consist of lists taking into account the different reliabilities of the
of the points connecting the centers of each of the sources. Diffcrent signatures can have varying reliabil-
segments. Convergence and thin-line features are fused iry depending on the situational context.
on the basis of end-point proximity and orientation.
AGFA does not use motion as a signature for detect- Low-Level Machine Intelligence

ing gust fronts. Motion is used only in heuristics that The conventional wisdom in computer vision/object
reject false features after they have been extracted. recognition research has been to use general image

During field testing in 1990 and 1991, a custom- processing operations, ideally devoid of object- and
ized version of AGFA was used for gust front detec- context-dependent knowledge, at the initial stages of
tion on an ASR-9 WSP 17, 81. Because of the lack of processing. Such operations might include edge de-
reliable velocity-convergence features, the ASR-9 ver- tection, segmentation, cleaning, and motion analysis.
sion of AGFA was configured to operate in a thin- And yet the ideal has never really been achieved in
line-only detection mode. Although the algorithm practice. For example, some knowledge of the sensor
was successful in detecting gust fronts that had thin- and the expcctcd scene contents must be implicitly
line signatures of good quality, it had some difficulty encoded in the form of thresholds or ot'ier similar
detecting gust fronts when the reflectivity was weak parameters to detect edges effectively.
or fragmented. Lacking convergence signatures to con- From the results of such general operations, image
firm the existence of gust fronts, the algorithm was characteristics are extracted and represented symboli-
prone to false alarms triggered by elongated low- cally. Machine intelligence is then applied, as if by
reflectivity weather echoes that are sometimes associ- definition, only on the symbolic representations at
ated with stratiform rain. Installing suboptimal detec- higher levels of processing.
tion thresholds to reduce the false-alarm rate further MIGFA has inherited the development environ-
reduced the detection probabilities. ment, control structure, knowledge-based signal pro-

In the above study, the scoring was done against ccssing, and several other important attributes of
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XTIRS. In contrast to more conventional approaches presence of some feature that is selectively indicative
to object recognition, sensor-, object-, and context- of an object being sought (the output of FTC is an
dependent krowledge is applied in the earliest levels interest image as long as the functional template en-
of processing, i.e., at the image processing stage. As codes an indicative feature). Higher pixel values re-
used in MIGFA, low-level machine intelligence ap- flect greater confidence that the intended feature is
plies knowledge in three ways. present at that location. Using interest as a common

First, knowledge of the current environment is denominator, MI(4A fuscs data by combining inter-
used to choose from a library those feature detectors est images derived from various pixel-registered sen-
which are selectively inticative of the object being sory sources. Using simple or arbitrarily complex rules
sought. Using multiple independent feature detec- of arithmetic, fuzzy logic, or statistics, MIGFA can
tors, MIG FA can adapt to different contextual cir- assimilate pixel-level evidence from several coregistered
cumstances. At the beginning of the processing of sources into a single combined interest image. Clus-
each scan, a rule-based expert examines contextual ters of high values in such combined interest images
information to select a set of feature detectors known arC then used to guide selective attention anc can
through experience to be the most effective for a serve as the input for object extraction. If done effec-
given set of circumstances. In the extreme, this pro- tivelv, the combined interest image provides a better
tesswould enable MIGFA to adapt itself dynamically representation of object shape than is evident in any
to changes in the environment. Currently, the only ingle sensor modalitrx Using these techniques, MIGFA

rule used by MIGFA selects between two fixed alter- performs a significant amount of knowledge-based
native sets of feature detectors, one set customized for processing before the application of the first discrimi-
the TDWR and the other customized for the ASR-9 nating threshold. Most traditional perception systems
WSPI Because of the redundancy inherent in the use apply one or several thresholds early in the processing
of multiple feature detectors, MIGFA tends to be as a way of quickly reducing the amount of data to be
robust: the malfunction of a feature detector or even processed. However, especially with ambiguous data,
the absence of one data source does not necessarily each applied threshold closes off options for detecting
halt processing and may have only minor effects on an object. A better strategy-a strategy attempted in
detection performance. XTRS and MIGFA-is to apply thresholds only after

Second, knowledge is also incorporated within fea- evidence from many sources of inf,,rmation have been
ture detectors through the design of matched filters meaningfully fused into a single map of evidence.
that are customized to the physical properties of the
sensor, the environment, and the object to be de- MIGFA Design
tected. A new technique of knowledge-based signal The system block diagram in Figure 4 is an overview
processing, called finictionaltemplate correlation (FTC), of MIGFA as configured for ASR-9 WSP data. In
allows the construction of customized signal process- preparation for processing, input images V (Doppler
ing operations that arc more effective than standard velocity) and DZ (reflectivity) from the current radar
operations (see the box, "Functional Template Corre- scan are converted from polar to Cartesian represen-
lation"). The output of FTC is a map of numeric tation and scaled to a useful resolution. Image SD is a
values in the range [0,11 that indicate the degree of map of the local standard deviations of V values. The
match between the pattern of pixels in an image SD and DZ images are then passed to multiple simple
region and the feature or object encoded in the func- independent feature detectors that attempt to localize
tional template. those features which are selectively indicative of gust

Finally, knowledge of the varying reliabilities of the fronts. The outptits of each of these feature detectors,
selected feature detectors is used to guide data fusion most of which are based on some application of FTC,
and extraction. Conditional data fusion is simplified are expressed as interest images that specify evidence
by using "interest" as a common denominator [9]. An indicating where and with what confidence a gust
interest image is a spatial map of evidence for the front may be present. The different interest images
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FUNCTIONAL TEMPLATE CORRELATION

FUNCTIONAL TEMPLATE correla- value of zero while those aver- kernel where moderate reflec-
tion (FTC) [1, 21 is a generalized aged scores which are greater than tivity values are expected, returns

matched filter that incorporates one are assigned a value of one.) maximal scores in the interval

aspects of fuzzy set theory. Con- The output of FTC is a map of' 5 to 12.5 dBZ and gradually

sider, as a basis for understand- these values, each of which re- decreasing scores for both higher

ing, the basic image processing flects the degree that the shape or and lower image values. Note that

tool autocorre/ation. Given some object implicitly encoded in the although very low image values
input image L an output image functional template is present at can generate scores of -1.0, a

O is generated by matching a ker- that image location, slower decline in score with a

nel K against the local neighbor- Consider as an example the minimum score of 0.0 is returned

hood centered on each pixel loca- functional template implementa- for image values above the maxi-

tion 1, The match score assigned tion of a simple matched filter mal scoring interval. This asym-

to each pixel OQ, is computed by designed to detect gust fronts in metry is an attempt to mitigate

multiplying each element value reflectivity data (Figure A). Gust the obscuring effects of storm re-

of K by the superimposed ele- fronts are observed as thin lines gions and other patches of high

ment value in I and summing of moderate reflectivity (approxi- reflectivity.

across all products. If the shape mately 0 to 20 dBZ) that are In general, by increasing or de-

to be marched can vary in orien- flanked on both sides by low re- creasing the intervals over which

tation, then the pixel 4., is probed flectivity (approximately -15 affirming scores (i.e., scores > 0.5)

by Kat multiple orientations. The to 0 dBZ). Figure A(I) shows are returned, scoring functions

score assigned to O-Vis the maxi- the template kernel consisting can encode varying degrees of un-

mum across all orientations, of integers that correspond to the certainty with regard to which im-
FTC is fundamentally the same two scoring functions shown in age values are allowable. In addi-

operation with one important ex- Figure A(2). Elements of the tion, knowledge of how a feature

ception: whereas the kernel used kernel that do not correspond to or object appears in sensor imag-

in autocorrelation is an array of either of the scoring functions ery can be encoded in scoring

image values (the array is essen- form guard regions in which im- functions. The interfering effects

tially a subimage of the image to age (i.e., reflectivity) values are of occlusion, distortion, noise, and

be probed), the kernel used in ignored and have no effect on clutter can be minimized by the

FTC is an array of scoring fimo- match scores. Scoring function 0, use ofvarious design strategies [31.
tions. The scoring functions re- corresponding to the flanking re- As a consequence, matched filters

turn scores that indicate how well gions of low reflectivity, returns a customized with FTC for specific

the image values match the ex- maximal score of 1.0 for image applications are generally more ro-

pectations of the values at each values in the interval of -20 to bust than classical signal process-

element of the kernel. The set of -5 dBZ, a gradually decreasing ing operations. In the thin-line

all returned scores are averaged score for image values in the in- matched-filter example shown in

and "clipped" to the continuous terval -5 to 10 dBZ, and a score Figure A, the filter does not sim-

range [0,1]. (In the clipping pro- of -2.0 for image values larger ply find thin lines, but selects

cess, those averaged scores which than 10 dBZ. Scoring function 1, those thin lines which have re-

arc less than zero are assigned a corresponding to the center of the fiectivity values within a particu-
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FIGURE A. Example functional template for thin-line feature detection: (1) index kernel and
(2) corresponding scoring functions. By increasing or decreasing the intervals over which affirming
scores (i.e., scores > 0.5) are returned, scoring functions can encode varying degrees of uncertainty
with regard to which image values are allowable. In addition, knowledge of how a feature or object
appears in sensor imagery can be encoded in scoring functions.

lar range. Furthermore, the tion, thin-line filtering and an image value.
matched filter can display differ- smoothing, shape matching, skel-

ential tolerances to image values etonizing, and erosion. Refrrences
S1. R.L. Delanoy, J.G. Verly, and D.E.

that are higher or lower than the If FTC were implemented lit- Dudgeon, "Functional Te'mplates and

expected range of values. In the erally as described here, the com- Their Application to 3-D Objecu Rec-

automatic target recognition putational expense would be pro- ognition," Proc. Intl. Con/"onAcoustics,
Speech, and Signal Processing (ICASSP),

(ATR) systems developed at Lin- hibitive for most useful tasks. But San Francisco, Mar 1992.

coin Laboratory, FTC has been FTC is actually faster than auto- 2. R.L. Delanoy and J.G. Verly, "Com-
puter Apparatus and Method for Fuzzy

used primarily as a direct one- correlation if the input data are TemplateShapeMatchingUsingaScor-

step means of three-dimensional scaled to a fixed integer range (e.g., ing Function," U.S. Patent No.

object detection and extrac- 0 to 255) and the scoring func- 5,222,155 (June 1993).
3. R.L. Delanoy, J.G. Verly, and D.E.

tion. In the Machine Intelligent tions are implemented as a Dudgeon, "Pixel-Level Fusion Using

Gust Front Algorithm (MIGFA), precomputed two-dimensional Interest Images," 7'chnical Report 979,
MIT Lincoln Laboratory (26 Apr.

FTC is used more as a signal pro- lookup table that is indexed by 1993).
cessing tool for edge detec- a scoring-function number and
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Input Feature detectors Output

... •@OUT-OF-TRIP

COMBINE

DZ ----- • TL-SDZ

D Z T-DZ 7 Interest image

---[DZ-MOTION HEXTRACT I

PriorPREDICT New predictions

predictions Updated

Prior T history (EventN
history (EventN- 1 EventN-1

EventN_ 2

FIGURE 4. Block diagram of the Machine Intelligent Gust Front Algorithm (MIGFA). For a description of the different
feature detectors, see the subsection "Feature Detection" in the main text.

are fused to form a combined interest image, thus ic locations. ANTICIPATION is tuned so that it

providing an overall map of evidence indicating the will not automatically trigger a detection by itself
locations of possible gust fronts. but, when its output is averaged with other interest

From the combined interest image, fronts are cx- images, it will support weak evidence that would

tracted as chains of points. The chains extracted from otherwise be insufficient to trigger a detection. Fig-

a radar scan, collectively called an event, are inte- tire 5 is a summary of the processing steps f)r an
grated with prior events by establishing a point-to- example ASR-9 WSP scan.

point correspondence. Heuristics are then applied to

reject those chain points which have an apparent Image Preparation

motion that is improbable. The updated history As discussed earlier, velocity convergence is an unroli-

is used to make predictions of where points along able signature for detecting gust fronts in ASR-9) WSP

the front will be located at some future time. Such data. Gulst fronts, nevertheless, are visible in velocity

predictions are used in the processing of subse- images. Because of the tendency fi)r high-pass clutter-
quent images, specifically in the feature detec- filtered pulse-pair Doppler estimates in a velocity im-

tor called ANTICIPATION. In the output of age to have high variance in regions of low signal-to-

ANTICIPA'TION, high interest values are placed noise ratios (SNR), the local velocity variance is higher
wherever fronts are expected to be, thereby selectively for an area of clear air than for an area associated with

sensitizing the system to detect gust fronts at specif- slightly higher reflectivity' values. This information is
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translated into a usable form by transforming the computing for each element of the Cartesian array
velocitv image V into a map of local standard devia- the range bin and radial at which the corresponding
[tons (the SD image). At each pixel of V, the standard value is to be found in the polar array. During the
deviation was computed in the surrounding S x 5 mapping process, an implicit subsampling of the data
pixel neighborhood and assigned to the correspond- occurs. From an initial radial resolution of 120 m per
in, pixel in SD. range bin and pixel size in the azimuthal dimension

Pixel values for all images are scaled to zhe interval decreasing from 680 m at 28 kim, the final Cartesian
0 to 255 to support subsequent FTC operations on image has a pixel resolution of 480( m per pixel.
the input imagery. Each image is tagged with the
scaling factor and offset necessary to translate scaled Feature Detection

values back to the original physical values. Given contextual information of the sensor being
Finally, the DZ and SD images are converted used, the location of that sensor, and the cnvironmen-

from polar arrays (240 range bins x 256 radials) to tal conditions, a rule-based expert selects an appropri-
Cartesian arrays (130 x 130). Mapping is done by ate set of feature detectors for application to the input

FIGURE 5. Processed scan summary. In the first row are the DZ (reflectivity) image, SD (standard
deviation of velocity) image, and the combined interest image that has been computed from the DZ
and SD images. The second row begins with the extracted indexed event. White pixels are those
points which have been declared as part of a gust front. Gray pixels are those points which have not
been tracked long enough to establish sufficient confidence. In the history frame, the current chain
is shown in white and the preceding scans are shown in shades of gray (darker shades indicate
more distant events in time). In the predictions frame, fat gray pixels indicate the 10- and 20-min
forecasts of where the fronts are expected to be. Also shown at the bottom right corner are the
estimated time of arrival of the next gust front to cross the radar site, the speed of the winds
measured inside the front (in m/sec), and the direction (in degrees) from which the front is coming.
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I)t-MT()IIl)N simply look,, to)r thin lines ot positivc O)ne templtc looks for radially aligned thin liies in

values, IThe f"Unctional template t... d1 has a kernel thalt the I) iD nagc, wIh ic tlh other rcquirts that the c .0rc-

IS identical to the one shoNv i0 L Figure A ot' the box, sponding SI) values are high. [hc result is an intcre,,t
"Functional lk.mplate (Coirelation." but the scoring inmage that highlights out-ot-trip signals. Atcr the

tunct ilons are somew'shat dit'erent becauCse a th' e conl- combination oat all other interest inagcs,. the out-ofl
scquenccs ofa ite.rencing. The tfaturc-dctccor SI)- trip interest image is subtrat.ted froi the .onmbined

MO(')I I), is Similar to i)/-M()TION in that SI)- interest image, thus sclectivelh supprcssing CvIdClnic

MLi 'i )N al-so applies t) the dittereiice of two tar the presence Of gu.t|, fronts where out-of-trip sig-

sCqtuential images a thin-line tilter with customizcd nals are ftOnd. Fxamlpe outputs at( the (Ill I.-

scaring functions. Withl this approach, thin lines that (,iF-TRIiP fttatulrc detector are shown in Fligure, 0

do not move are given low interest values, rcflecting and '.

the belicf that a stationarv thin line is either not a gust hlhe ANTIC(I PATIO()N fcat tirc dCtctotr pul, ide, a

front or is a gLu.st froant that may be ignored. Bccausc mechanism, based oi, situational context, for spatiallv

the background in dift1rrenced images is reduced to adjusting the detection sensiti\itV of .\ Il(F[A. 11tilh
values near ,cro, .)Z-M(.YIOIN and 51)-MOTION anticipaton \alules get averaged with intercst valucs

tend to be more scnsitivc than T11-1V and iIT-SI). from other feature detectors to increase the likclihotd
Onle disadvantage at I)o-MO lION and SI).- ot detection at specitic locations. Sinilarlh-, lovN antic

MOTION is that they tend to produce talse alarms pation valucs suppress the likelihood at 'dctcctian.

when inoving storms are present because the leading The most important use of anticipation is a, a

cdgc of the storm may appear in the difericriced replacecnent tar McastiN. Simply dclnoed, coasting is

image as a thin line of positive values. For reducing the continued tracking of a target an a radar s.reen
the likelihood of'such false alarms, an ima)ge t'srorn) ftar sotne time interval after the target has disappeared

regions is generated with a round f'unctional template (i.e., at'ter the targct's signal has fallen bclow\ Nome

whose kernel has a diameter of 13 pixels (6.25 kin). detection threshold). Coasting asstimsc, that the loss

Wherever storm regions are detected with this tem- of a target's signal is not duC to a change in the target'

plate, interest values arc decreased in 1)Z-MOION behavior (e.g., a change in velocity or perhaps the

and set to nil (i.e., no opinion) in S1)-M.'I'ION. disappearance of the target). . ;tst tronts. ho\wvccr. do

A fifth feature detector, OUT-O'F-TRI1i, highlights change their behavior, as in cases in which gust fronts
range-ambiguous echoes. Rangc-anbiguItUS echoes collide. ConscquCntlY; the blind coasting of a signal

occur when signals are reflected by weather more after the signal's loss is a potential source ( false

distant than the maximum unambiguous range. Be- alarms. As an alternative to blind coasting. anticipa-

cause the signals have traveled Larthcr, they, arrive tion provides a mechanism for progressively incrcas-

back at the radar receiver at the same time as signals Ing th,: sensitivity of a detection system, stuipporting

that are transmitted later and reflected from nearer weak evidence that would otherwise fall below detec-
weather (hence the name OUT--OF-TRIP). For these tion thresholds.

range-ambiguous echoes, the apparent range extent is In MI(;FA, prior history of the behavior of a par-

maintained while the azimuthal extent is reduced ticular gust front is used to predict \\vhere that front is

proportional to the range; thus the signals have a expected to be in the current scan. The predictions

distinctive appearance as reflectivitv thin lines that are are used to create a band of elevated interest values,
radially aligned and that are associated with high local typically not so high as to trigger a detection by

variance in the Doppler data. Because of their thin- themselves, but high enough to raise collocated weak

line appearance, range-ambiguous echoes arc often signals above threshold. In general, as the length of

inappropriately given high interest valucs by both time a gust front has been tracked increases, the an-

1T.-I)Z and D/.-M(OTION. ticipation interest values can also be increased. If ah-

"The detection of out-of-trip signals is performed solute coasting is desired, interest values can be in-

by applying two ftunctional templates simultaneously. creased to a level high enough to trigger a dcecttiOn
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without any other supporting evidence. Examples of TI[-SI), [)Z-MO I[ION, and S"I)-MIOTION arc a. -
aticipation interest images are shown inI Figurcs 6 craged together. During the process, any missing val-
and t. ucs arc ignored. The rcsu, lting averaged interest image

Anticipation can also be used to adjust the scnsitiv- and the anticipation interest image arc combined as a
itV of gust front detections on the basis of contextual weighted average: the average of the f'trst four interest
kno\ledgc. Some examples follow: images is given a weight of 07"5 while the anticipa-
1 \Itiiv gust ftonts are not observable in radar tion image is given a weight of 0.2>. Finallyh element,,

data when the fronts are directly over the radar of tile out-of-trip interest image are multiplied b\
site because of obscuration by intense ground 0.25 and subtracted from the elements of the % eightcd
clutter. EIven with anticipation of where a gust average. The resulting Image is called the combined
front is expected to be, the radar system can interest imnage.
often lose the front as tile front crosses over the Figure 0 shows an example ASR-9 \VSP 1)! iD/
radar site. TO prevent such a loss, absolIte coast- age, the outputs of each feature detector, and the final
ing over the radar site can be accomplished by interest image. In this case, strong evidence for the
setting interest values within 2 kml of the radar two fronts is visibie in each of the component interest
site to nil (i.e., missing vahles) for all interest images (except, oftcourse, for the out-of-trip image).
images ivwcpt the anticipation image. Conse- (learlv, any one of the feature detectors acting alone
quently, the anticipation interest image will be would have been adequate. Nows consider Figure -
the only image allowed to have an1 opinion of which summarizes the evidence for tile presence o(f
what exists directly over the radar site. the two gust fronts in a later scan in which detiection

2. (;Lust front false alarms often occur from thin, has become more difficult As accumuI.lating storm re-
elongated bands of low-reflectivity stratiform gions have occtuded the fronts. Note that ahhough
rain. In central Florida at least, gust fronts arc different parts of tile gust fronts are highlighted in
seldom associated with the stratiforni rain that different interest images, tile gust fronts are not iln-
often follows intense storm activity. Hence, tinl- ambiguously visible in any single interest imagc (cx-
dter such conditions, tile ANTICIMIATION fea- cept the anticipation image). In the combined inter-
turc detector suppresses tile background antici- est image, however, tile gust fronts are much more

pation interest values, apparent. This example illustrates how evidence de-
.3. False alarms are rare in the absence of any pre- rived from multiple f&ature detectors can be com-

cipitation. Thus, when no precipitation is vis- bined so that the various detectors nuituallv sui.port
ible on the radar screen, tile background antici- and compensate for cne other.
pation interest values may be safely raised, In MIGFA, no one feature detector is mleant to
thereby incrcasing the likelihood of detecting an be a perfect, or even necessarily a good, discrimi-
incoming gust front that is generated by a more nator of gust fronts and background. When used
distant storm, together, however, several weakly discriminating

feature detectors can achieve robust performance
(ownbiu'i';'g L',itlence depending on how the detector outputs are

During the feature-detector selection process, a ru/e combined.
o•?'omb'inati*n is also chosen to govern the combining
of evidence-an example of data fusion. InI principle,
the rulc of combination can be as simple as the aver- Algorithms, such as AGIFA, that track gust fronts as
aging of pixel values across all interest images. How- entities must identify gust fronts prior to tracking.
ever, for the set of ASR-9 WSP feature detectors The algorithms rely on the assignment of unique
described earlier, a somewhat more complicated rule labels that permit the establishment of corrcspon-
has been used. dcnce across time. Gust front statistics, such as propa-

The f•ur interest images generated by TIF-D, gation speed and location, are computed for the front

,,,. ,I I,", '.' ý, ,,. :.,I ,. " -, ýr)P [ý , , , -%.'. 201
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FIGURE 8. The bow-tie functional template used for thin-line smoothing: (a) index kernel and
(b) corresponding scoring functions. (For an explanation of functional templates, see the box,
"Functional Template Correlation.")

as a whole. This approach is adequate for simple that the variable velocities of different points along

cases. Inevitably, however, complex rules are required the gust fronts are each used to make predictions of

to handle the labeling, correspondence, and tracking what the gust front appearance will be at some time in

for cases in which a single front breaks up into dis- the future.
joint fragments or for cases in which multiple fronts Thin iines in the combined interest image can be

merge or collide. Given the variable nature of gust fragmented for gust fronts that intersect with out-of-

front behavior, the construction of a fully compre- trip weather or for fronts obscured by storm regions.

hensive set of rules that are correct for all possible To bridge gaps between collinear fragments and to

circumstances is a difficult task. suppress random unaligned high-interest values,
The problem is bypassed in MIGFA by making the MIGFA uses thin-line smoothing of the combined

goal of extraction the identification of all points (col- interest image. Figure 8 shows the bow-tie functional

lectively called an event) that lie in any gust front. template used as the basis for thin-line smoothing.

Certainly, some chains of points are spatially segre- The template, inspired by the receptive field of the

gated or have different velocities. For purposes of cooperative cell of the Boundary Contour System

reporting, such chains can be inferred to belong to developed by S. Grossberg and E. Mingolla [10), has

separate gust fronts even though there is no concerted a bow-tie shape that weights the influence of the end
attempt to label or track gust fronts as entities. In- regions over that of the center by placing more kernel

stead, individual points are tracked across time; that a elements at the ends. Consequently, the template gen-
point belongs to one gust front or another is irrele- erates high output interest scores for an image point

vant to processing. MIGFA predictions are elastic in between two collinear high-interest segments, even if
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that middle point itself has a low input interest value, matches at 1700. An example orientation image is
Because of the scoring-function design, the bow-tie shown in Figure 9.
filter suppresses those collinear interest values which The elongated binary shapes of the "match > 0.5"
are below the level of ambiguity (0.5), and amplifies image can be thinned down to a single-pixel-width
those values which are above the level of ambiguity. skeleton by using an FTC implementation of a modi-
With this design, the boundaries between gust fronts fied version of S. Levialdi's homotopic thinning [ 11 ].
and background are sharpened, resulting in cleaner The result of thinning is shown in the frame labeled
shapes for subsequent processing. An example of an "marked thinned" in Figure 9.
inputt image of combined interest and an output The chains of points resulting from thinning are
smoothed image are shown in Figure 9. then extended along ridges of relatively high interest

A threshold of 0.5 is then applied to the smoothed by using what is essentially a road-following algo-
image to create a binary image of candidate fronts. rithm. At each end point, the pixels immediately
The lengths of resulting elongated shapes are then surrounding that point are examined by looking out-

computed, and the elements of those binary shapes ward from the rest of the chain for the maximum-
which are too short (<6 km for the ASR-9 WSP) are interest pixel with an orientation (found in the orien-

set to 0. The result of this process is shown in the tation image) that is within a specified angle from
frame labeled "match > 0.5" in Figure 9. that of the initial end point. When the maximum

The bow-tie functional template also generates a interest score of a new point falls below 0.2 or when
map of orientations. In the orientation image, each no new point has an orientation consistent with the

element indicates the orientation that is associated initial end point, extending halts. The result of the
with the highest-scoring bow tie rotated at 10' incre- extending process is shown in the frame labeled "ex-

ments from 0' to 1700. Black pixels correspond with tended" in Figure 9.
best matches at 00; white pixels correspond with best After the chain-extension process has been com-

OI COBIE INTRS SMOTE INERS MAC .

FIGURE 9. Extraction steps. Candidate gust fronts are extracted from a combined interest image. For a description of the
different steps involved, see the subsection "Extraction" in the main text.
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pleted, the resulting image may be highly branched 0 means that the point is unindexed.) Once

and it may contain loops. For further refinement of indexed, each point is assigned the follow-
the image, chain segments are assigned scores based ing attributes: coordinates, distance moved, di-

on the sum of the corresponding interest values found rection moved, depth, Doppler value, interest
in the smoothed interest image. In each disjoint net- value, and propagation speed.
work of chain segments, the single most interesting After indexing, each extracted chain of points is

(usually, but not always, the longest) non-looping edited:

combination of chain segments is extracted as the I. If the direction a single point moves is opposite
candidate gust front. Once the most interesting chain (approximate difference of 180') from its neigh-
has been extracted, the process is repeated on the bors, the direction of the point is reversed.
remaining unextracted chain segments to find the 2. Single chains may be divided into two subchains

next most interesting combination of chain segments. if a persistent discontinuity in velocity or a per-
The extraction process is repeated until the most sistent change in orientation is detected at some
interesting remaining chain is below an empirically point along the chain.

determined interest threshold. In Figure 9, the frame 3. Various parameters such as propagation speed,
labeled "selected chains" shows the set of above-thresh- Doppler value, and direction of motion are

old combined chain segments that were extracted smoothed along the length of each chain.
from the "extended" image. 4. Heuristics are applied that, when satisfied,

unindex individual points in a chain. If more

Tracking/Heuristics than half of any chain's points become unindexed,
As stated earlier, each point in the extracted event all points in the chain are unindexed.

is tracked individually. The tracking of a particular The heuristics mentioned in item 4 above are based
point requires that the corresponding point in the on knowledge of how false alarms can be distin-

event immediately prior to the current event be found. guished from real gust fronts. For example, if the
Correspondence can be difficult to establish when direction a point moves is inconsistent with the mea-
several gust fronts collide; in such cases, the point sured Doppler value, the point is unindexed. Or, if

in the prior event that is closest to a point in the the point is approaching the radar site ard moving in

current event might not necessarily be the correct the same direction and no faster than the winds mea-
corresponding point. Consequently, the correspond- sured by anemometers at the radar site (i.e., there is
ing point is chosen to be the closest point in the no convergence), the point is unindexed.

immediately prior event for which the orien- In the final stage of tracking, a binary decision is

tation and speed are consistent with the given made for each chain as to whether the chain should
point in the current event. If no such point in be declared a gust front. A chain's summed interest

the prior event is found, then the corresponding point score and the depths of its constituent points are used

is assumed to be the closest point. Once cor- to make the decision. For chains with high summed
respondence for a point is established, the point interest scores (reflecting a higher degree of con-
is indexed by creating a pointer linking that point fidence), points with lower depths may be in-
to the corresponding point in the immediately cluded. On the other hand, chains that have low
prior event. If the distance between the two corre- summed interest scores are less likely to be gust
sponding points is too large or if the distance is fronts and are thus required to accumulate
inconsistent with prior history, then the point is higher depths before being included in the an-

unindexed (i.e., the link is broken). Through the nounced gust front detections. The frame labeled
index links, a point can be tracked backwards "indexed event" in Figure 5 shows the set of all

in time to its first recorded instance. The number extracted points. White pixels represent those
of prior events through which a point can be points which have the sufficient depths and interest
tracked is called the point's depth. (A depth of scores to be reported. Gray pixels represent those
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points which will not be reported due to a lack of
confidence. In the frame labeled "history," the re- Results
ported points are shown in context with previously The performance of MIGFA has been scored against
reported events. human interpretations of the same input radar data.

Implicit in this statement is the assumption that hu-
Prediction man interpretations are 100% accurate. As we will see

The current extracted event, indexed into the prior later, this assumption is not always correc,.
history, is used to predict the future locations of those The human interpreter had access to both Doppler
points which have the sufficient depths and interest and reflectivity images for an entire sequence of ASR-
scores. Given the direction moved, the propagation 9 WSP scans, which could be viewed separately or in
speed, and the current coordinates of a point, a new sequence as a movie. For each scan, a description of
coordinate is computed for some specified time in the "truth" (i.e., the interpretation of the scan by a hu-
future. Gaps can arise between the projected future man) was stored in a table as a list of coordinates
coordinates of two adjacent gust front points when marking the gust front end points and an intermit-
the orientations and velocities of the points are not tent sampling of points in between. For categoriza-
identical. In such cases, tb g-ins are filled in. An tion of results, the estimated maximum wind shear in
example showing the reported chains and their ex- the zone of convergence was also stored. This scoring
pected locations after 10 and 20 min is shown in the exercise was intended to measure MIGFA's detection
frame labeled "predictions" in Figure 5. performance, not the end-to-end gust front detection

ASR-WSP GUST FRONT DETECTION ASR-WSP GUST FRONT DETECTION

REFLECTIVITY VELOCITY

FIGURE 10. Human versus MIGFA interpretation of ASR-9 WSP data. The 5-km-wide box denotes a region where a hu-
man interpreter has detected a gust front. The single line represents a detection by MIGFA. Note that the human interpreter
did not include the extreme ends of the front because the ends were nearly radially aligned and had weak reflectivity
values-characteristics of out-of-trip weather. However, because the extended thin line moved consistently with the center
of the front and because the variance of Doppler velocity values associated with the thin line was too low to be out-of-trip
weather, MIGFA probably gave the more likely interpretation. The reflectivity is given in dBZ, and the velocity in m/sec.
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capability for the ASR-9 WSP Consequently, the hu- as percentages.) In addition to the hit-or-miss POD
man interpreter was restricred to including in the and PFA scores, scoring is also done in terms of the

truth set only those gust fronts which had some vis- percent overlap of computer-generated detections and

ible signature, however subtle. Other data sources, truth boxes. The percent length detected (PLI)) is the

such as matching T[)WR data and anemometer mea- number of points in an algorithm-generated detec-

surements of winds over the radar site, were used to tion that fall within a truth box divided by the length

confirm or deny the existence of gust fronts that had of that truth box (in pixels). The percent false length

an ambiguous appearance in ASR-9 WSP data. The detected (PFD) is the number of points in an algo-

interpreter, however, did not use these other data rithm-generated detection that fall outside any truth

sources to define gust fronts in the absence of visible box divided by the total iumber of algorithm-gener-
ASR-9 WSP signatures. For cases in which MIGFA ated gust front points.

detections in ASR-9 WSP data were scored against a One improvement to this method is the use of a

human interpreter looking at TDWR data, the same MAYBE category of truth. Often gust fronts or parts
procedures were used to generate the TDWR truth of gust fronts are only marginally detectable, forming

tables. a gray area in which the human observer is un ccided
An automatic scoring procedure, described in de- or uncertain. If an algorithm detects a weak gust front

tail by D. Klingle-Wilson et al. [ 121, compares corn- associated with an ambiguous signature, the detection

puted gust front detections with human-generated should not count as a false alarm. Similarly, if the

truth (see Figure 10). Briefly described, the scoring algorithm misses a gust front that is too weak to have

algorithm draws lines that connect the sequence of any operational significance, the miss should not af-

coordinates encoding the human-estimated limits of fect the POD and PLD scores. Radar image features
a gust front. The lines are then expanded to a 5-kin- that are categorized as MAYBE are omitted from

wide region that is called, in this article, a truth box. scoring.

Computed gust front detections overlapping with some Table I compares the performance of MIGFA

portion of the truth box are counted as successful against the latest version of AGFA, which uses more

detections while those not overlapping are counted as conventional methods of signal processing and com-

false alarms. A probability of detection (POD) is puter vision. The test set of ASR-9 WSP data col-
computed by dividing the number of successfully lecred in Orlando, Florida, during field testing in

detected fronts by the number of fronts identified by 1991 contained nine different moderately strong gust

the' tman interpreter. The probability of a false alarm fronts tracked through 15 hours (372 images). A

(PFA) is the number of false alarms divided by the human interpreter looking at the same data detected

total number of algorithm-generated detections. (Note: 280 instances of the nine gust fronts. The first two

In this article, POD and PFA values will be expressed columns of Table I indicate that MIGFA increased

Table 1. AGFA and MIGFA Performance* on ASR-9 WSP Data

Gust Fronts Gust Front Length

Probability of Probability of a Percent Length Percent False Length
Detection (POD)** False Alarm (PFA)** Detected (PLD) Detected (PFD)

Baseline (AGFA) 56.7 4.6 38.9 12.9

MIGFA 88.1 0.6 86.2 33.4

* As scored against human interpretations of ASR-9 WSP data

Expressed as a percent
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Table 2. AGFA and MIGFA Performance* on ASR-9 WSP Data

Gust Fronts Gust Front Length

Probability of Probability of a Percent Length Percent False Length
Detection (POD)** False Alarm (PFA)** Detected (PLD) Detected (PFD)

Baseline (AGFA) 42.6 3.2 21.0 4.2

MIGFA 75.1 0.0 58.7 6.4

* As scored against human interpretations of matching TDWR data
Expressed as a percent

by more than 50% the number of fronts detected by able in TDWR imagery, we assume that the TDWR
AGFA, while decreasing the false-alarm rate. Simi- truth (i.e., the TDWR data as interpreted by a hu-

larly, the PLD scores (column 3) indicate an improve- man) is more accurate than the ASR-9 WSP truth
ment in detection performance. The increase in PFD (i.e., the ASR-9 WSP data as interpreted by a hu-
(from 12.9% to 33.4%), however, appears to suggest man). Thus the difference between the PFDs as scored
that MIGFA is not as good as AGFA at discriminat- against ASR-9 WSP and TDWR truths crudely ap-
ing the extent of individual fronts. proximates the percentage of detected gust front points

For a better understanding of why MIGFA was missed by the human interpreter. For MIGFA, tbic°

extending fronts beyond what the human interpreter difference (33% - 6% = 27%) added to the PLD
believed appropriate, we examined several cases in scored against the ASR-9 WSP truth (86%) is 113%;
which the PFD was high. In most of those cases, we i.e., MIGFA's performance was 13% better than that
found the extra points that MIGFA included in the of the human interpreter. For AGFA, the comparable
gust front detections were believable. For example, result is 13% - 4% + 39% = 48%.
Figure 10 shows a gust front truth box that overlays a MIGFA was installed at the ASR-9 WSP site at
MIGFA-generated detection. The human interpreter Orlando International Airport in the spring of 1992
was reluctant to include the extreme ends of the front and was part of a formal operational test from 8 July

because the ends were nearly radially aligned and had to 20 September. During this time, gust front detec-
weak reflectivity values-charpceristics of out-of-trip tions and predictions were relayed to air traffic con-
weather. However, because tl,: extended thin line trollers for their use in planning air traffic operations.

moved consistently with the center of the front and During the early part of the summer, several minor
because the variance of Doppler velocity value, asso- problems and algorithm deficiencies were identified,
ciated with the thin line was too low to be out-of-trip and several fixes and enhancements were added dur-
weather, MIGFA probably gave the more likely inter- ing the middle of July. Careful interpretation, or
pretation of the scene. "truthing," of the ASR-9 WSP data by a human was

To substantiate such anecdotal observations, we done from 1 August to 20 September.

took the gust fronts that MIGFA and AGFA had As with the off-line testing described earlier, the
detected in ASR-9 WSP data and scored the fronts on-line performance wv-s scored against human inter-
against human interpretations of TDWR data that pretations of the same data. Table 3 shows the per-
had been taken at the same time. Althoug'- ', re'-ilt- formance statistics for the test period. In general, the
ing scores (Table 2) support the general trend of the on-line test results substantiate the off-line re-
first three columns of Table 1, the PFD for MIGFA suilts. Not surprisingly, the POD (75%) and PLD
(6.4%) is now roughly the same as that for AGFA (81%) were somewhat lower than for the off-line
(4.2%). Because gust fronts are more readily observ- test results shown in Table 1. Most of this differ-
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Table 3. MIGFA Results* on ASR-9 WSP Data

Gust Fronts Gust Front Length

Probability of Probability of a Percent Length Percent False Length
Detection (POD)** False Alarm (PFA)** Detected (PLD) Detected (PFD)

MIGFA 75.4 1.8 80.8 21.1

Results are scored against human interpretations of the same ASR-9 WSP data

Expressed as a percent

Note: The data are for the period 1 August to 20 September 1992 in Orlando, Florida

ence can be explained by two problems. detected gust front lengths through areas where the

First, several gust fronts had reflectivity values at or signatures appeared ambiguous. As was seen with the
below the sensitivity limits of the ASR-9. Of course, off-line testing described earlier, a case-by-case analy-

those fronts with reflectivitY values below the ASR-9 sis indicates that most of these extensions were in fact
limits were missed by both MIGFA and the human justified even though they were inappropriately scored
interpreter. But there were a few cases of marginal as false lengths. Rescoring the results against TDWR
contrast in which the human could detect a gust front data should improve the PFD score.
while MIG FA had not accumulated enough confi- Another way to assess detection performance is to

dence to declare an alarm. Note that, unlike MIG(FA, score only those gust fronts which had an impact on
the human interpreter had the opportunity to exam- airport operations. From 20 July to 20 September,

ine the sequence of radar images repeatedly and could 14 convergent wind shears of greater than 15 kn were
use information from scans late in the sequence to recorded on the anemometer network at the airport.

confirm or deny the existence of the gust front in Two of the wind shears were the result of short-lived
Carly scans. Not much can be done to overcome the localized winds beneath storm regions that were di-
sensitivity limits of the ASR-9. In most (but not all) rectly over the airport. The cause of a third wind shear

cases, however, gust fronts with marginal reflectivity could not be determined for certain, but was prob-
levels were associated with weak wind shears. Because ably due to a microburst that was reported at the
these weak fronts had a minimal impact on airport south end of the airport just as the wind shear was
operations, a failure to detect such fronts was not a recorded. In none of these three instances could hu-

significant liability, man intcrpretcrs find evidence of gust fronts in the

The second problem was that several gust fronts ASR-9 data.
were missed due to obscuration. In these cases, storm Of the 11 remaining wind shears, which were all
regions Of out-of-trip weather were extensive enough verified later as gust fronts by human Interpreters,

to hide or fragment the thin-line signatures so that MIGFA correctly tracked eight at least tip to (but not

some gust fronts were detected late, dropped early, or always over) the airport. In the eight cases, air traffic

sometimes missed altogether. controllers were given initial warnings from 18 to 79
The PFA (1 .8%) represents 19 false detections out mill prior to the arrival of the front. Of the three

of 1080 total detections generated by MIGFA in missed gust fronts, one was occluded by fast-moving
more than 14,000 scans processed. The high PFD storm regions that were trailing the front. The second
(21.1%) is almost entirely the result of Ml(;FA's ex- missed gust front had a very weak fragmented thin-

tending gust fronts beyond the ends delimited by the line signature that was missed both by MIGFA and
human interpreter. With the use of anticipation based the human operators at the radar site who were log-
on prior tracking data, MI(;FA was able to extend the ging weather and system activity. The third missed
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case was a young gust front that had been generated however, provide a reasonable basis for comparing
by a large microburst only 5 km away from the run- MIGFA against the older algorithm.
ways. Because of its youth, the gust front had not yet The results for the operational test period should

developed a thin-line signature. Human interpreters be more representative of MIGFA performance. In
who studied the radar scans after the testing was the on-line testing, the POD and PLD scores re-

completed could find no evidence of this particular mained high (in fact, the scores were only somewhat
gust front in the ASR-9 ýWSP data, but could see a lower than those reported for the off-line testing), but
small zone of convergence without a corresponding an apparent problem in the relatively high PFD score
thin-line signature in the data from TDWR. In sum- (21%) persisted. Again, as was shown in the initial
mary, although MIGFA correctly detected and tracked off-line testing, many of the false detections were in
(up to the airport) 8 out of 11, or 73%, of the gust fact weak gust fronts or parts of gust fronts that the
fronts that had an impact on airport operations (wind human interpreter had overlooked. Although these
shear > 15 kn), human operators working at the radar results have not been rescored against TDWR truth,
site were able to log 9 out of 11, or 82%, of the same the existences of gust fronts were established for sex,-
gust fronts. eral cases by the examination of matching TDWR or

False gust front detections that are reported to be anemometer data.
approaching an airport can also adversely affect air- An analysis of results accumulated during the 1992
port operations. If a false alarm were trusted, inappro- operational test period has identified three main classes
priate changes in airport operations planning might of failure modes for the ASR-9 WSP version of
be made and the resulting delays could be just as bad MIGFA. The failures within the first class are a direct
as when a gust front is missed. During the test period, result of the limited sensitivity of the ASR-9. Some

three incoming events-covering a combined time of gust fronts that were visible in TDWR data and that
24 min (12 scans)-were scored as false alarms. Only had an impact on the Orlando airport with moderate
one event generated a false wind-shear hazard alert wind shear had reflectivity returns below the sensitiv-
(wind shear > 15 kn). All three were probably the ity of the ASR-9. Like MIGFA, experienced human
result of thin lines from stratiform rain. None of these observers using ASR-9 data did not see such gust

false alarms should have influenced airport operations fronts, although with the benefit of hindsight the
planning because in each case tracking was dropped observers could sometimes detect above-threshold frag-
when the estimated time of arrival at the airport was ments of what must have been the approaching front.

more than 40 min. In general, gust fronts with thin-line signatures that
have reflectivity levels at or below the sensitivity limits

Evaluation of the ASR-9 usually (but not always) exhibit

Using the same input ASR-9 WSP data, we have weak wind shears, making them operationally less
shown by direct comparison that MIGFA provides a significant.
substantial improvement over AGFA in detection per- The second failure mode was due to a lack of
formance. We have also provided indirect evidence reliable Doppler estimates of velocity in clear air.
suggesting that, given the same input data, MIGFA Because of the unreliability of these values, the ASR-9
may be nearly as good as human interpreters. How- version of MIGFA had to rely on thin-line signatures
ever, the absolute reported POD scores for MIGFA for detecting gust fronts. As discussed earlier, how-

(88% when scored against ASR-9 truth and 75% ever, not all thin lines are caused by gust fronts. For
when scored against TDWR truth) are potentially example, elongated low-reflectivity storm echoes as-
misleading and should be regarded with caution be- sociated with extensive areas of stratiform rain mov-
cause the dataset used for comparison testing was ing with the ambient wind were a source of falsL
relatively small and from only one season at one site. alarms in the operational testing. Because the
Thus the off-line test probably did not contain a good reflectivity levels of light-rain echoes overlap with the
representative sampling of gust fronts. The test did, range of reflectivity levels exhibited by g•s, fronts, thc
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thin-line feature detectors produced high interest val- other words, when obscuration is detected, the antici-

ues. In most of these cases, the thin-line features pation interest image becomes absolute, resulting in

associated with the stratiform rain were transient and spatially restricted coasting.

did not accumulate enough confidence through time

for the system to declare a gust front. Some false Summary

alarms could be dismissed because of the lack of The identifying signatures for gust fronts-thin lines

implicit convergent wind shears, which were com- of increased reflectivity, boundaries of converging

puted by comparing the radar-measured winds in Doppler values, and motion perpendicular to the thin

incoming candidate gust fronts with the winds mea- lines and convergence boundaries-are conceptually

sured by the airport anemometers surrounding the easy to define and exploit as the basis of detection

radar site. In at least one case, however, a false alarm algorithms. And yet, although several research groups

could not be rejected with this criterion. The winds at have worked collectively for nearly 10 years to de-

the airport were variable and not representative of the velop reliable automatic gust front algorithms, none

winds immediately in front of the feature, which was of the algorithms has demonstrated performance corn-

15 km away from the airport. parable to the ideal of human performance.

The third failure mode was caused by obscuration. The problem is that automatic gust front detec-

During the 1992 operational test period, several gust tion, like other applications in computer vision, is

fronts were either detected late, prematurely lost, or deceptively much more difficult than the task of sim-

not detected at all due to obscuration by patches of ply finding one or more signatures. Human observers

high reflectivity that were caused by storms, range- use a variety of perceptual skills that have been noto-

ambiguous echoes, or ground clutter. Even in places riously and surprisingly difficult to implement in corn-

where the thin-line features were visible, such patches purer-vision systems. For example, humans have a

of high reflectivity had sometimes fragmented the talent for dealing with uncertain, ambiguous, and

features into short segments. One missed gust front is even contradictory evidence. Humans use specific

known to have had an impact on the airport with a knowledge of the object being sought and the context

wind shear greater than 15 kn. of observation as well as the object's spatial and tem-

Experience gained from the operational test period poral context. Unlike most other computer-vision

has led to the implementation of a partial solution to and automatic target recognition (ATR) methodolo-

the obscuration problem. The solution uses anticipa- gies, the Experimental Target Recognition System

tion and the system's ability to detect obscuring weather (XTRS) and the Machine Intelligent Gust Front Al-

patterns. Given a sequence of images, there often gorithm (MIGFA) do not rely on machine intelli-

exists some time interval when a significant part of gence only at the higher symbolic levels of processing.

the gust front is not obscured and tracking can be XTRS provides a framework for applying knowledge

initiated. Once sufficient confidence has accumulated, at the level of raw data by using specialized techniques

the system begins to anticipate where the gust front for knowledge-based signal processing and pixel-level

ought to be in the next scan. In normal operation, the processing of evidence. The fact that MIGFA perfor-

thin lines of increased interest in the anticipation mance is competitive with that of human observers is

interest image are used to boost weak signals that at least partially due to this use of low-level machine

would otherwise be below threshold for detection, intelligence.

(During the operational testing, obscuration sup-
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Extracting Target Features
from Angle-Angle and
Range-Doppler Images
Su May Hsu

E For diffuse targets, features such as shape, size, and motion can be
determined from a time series of images from either angle-angle passive
telescopes or range-Doppler radars. The extracted target features can then be
used for automated target recognition and identification.

An algorithm that uses scene-analysis techniques has been developed to
perform the feature extraction. The algorithm first processes the images to
suppress noise, then applies a two-dimensional slope operation for edge
detection to determine the target boundaries. Next, Hough transforms are used
on the target edges to detect straight lines and curves, which are subsequently
refined with line and curve fits. Groups of the fitted lines are then examined to
form cylinders and cones representing typical target components. After these
shapes have been identified, the target configuration, size, location, and attitude
can be estimated. The target motion can then be inferred from a time series of
attitudes that have been extracted from a sequence of images.

OR A TARGET with rough surfaces, electromag- the line representation of the target, which is assumed

netic signals are reflected and returned from to be axisymmetric.

scatterers that are distributed over the entire In this article, examples of target feature extraction
target surface. The resulting imagery, whether angle- are demonstrated for both angle-angle and range-
angle (passive telescopes) or range-Doppler (radar), Doppler images. For angle-angle images, target orien-
will show a diffuse object with surface returns that tation is obtained from the projected elliptical shape
became apparent along the sensor line of sight (LOS). of circular components and the projected length of a
From such images, the target shape, size, and orienta- symmetric body axis. For range-Doppler images, tar-
tion can be determined from pattern recognition and get dimensions are first determined from a sequence
identification techniques. And, with a time sequence of range and Doppler extents that have been extracted
of images, the motion of the target can be estimated from the images. The target aspect-angle history can
from its orientation history. then be derived from that same sequence of range and

In the feature-extraction algorithm developed at Doppler extents (as for angle-angle images) by using
Lincoln Laboratory, the images are first processed to the estimated target dimensions.

suppress noise and to smooth the image surface. Edge

detection is then performed to determine the target Image Scene Analysis
boundaries, and the detected edge points are inte- The goal of target feature extraction is to obtain shape
grated into line segments to form target shapes. Next, information. From such information, the size, orien-

target dimensions and orientations are measured from tation, and position of a target can be estimated.
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FIGURE 1. Featu re-extraction process.

Shapes are composed of lines and curves that are noise, the averaging of multiple image frames to( en-
collections of boundary edge points. Such edge points hance the image signals, and the spatial smoothing of
can be located with edge-detection techniques. The the image surface. Thresholds are then applied to
detected edge points can then be associated with lines remove the image background, Next, a linear Hough
and curves by using predetermined fitting constraints, transform is used to detect and collect lines, which are
For the current application, cylindrical and conical later examined to form the boundaries of cylinders
shapes are considered, and Hough transforms are used and cones. The position and orientation of the axis
to detect the presence of lines and curves [ 11. of symmetry of each detected shape are then deter-

Figure 1 illustrates the feature-extraction process. mined. For angle-angle imagery, an elliptical Hough
First, image processing is performed to enhamic tie transform ,g;;rallv used to detect and fit the tar-
edge-detection process. The image processing includes get-base curve to allow for the subsequent calculation
the application of median filters to remove isolated of the target aspect angle. For range-Doppler imagery,
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an elliptical [Hough transform is used to determine Gradient operators of size 5, as shown in Table I,
the target dimensions, and, hence, to obtain the tar- arc used. In general, the operator size should be de-

get aspect angle. creased for coarser image resolutions beCaLise, as the
Fhe three miai. steps of scene analYsis for the resolution becomes coarser, the object boundaries be-

extraction of target features are edge detection, line coni closer to each other.
identification, and curve extraction. These three steps The calcuiated edge values are small for a smooth
are described in tile following subsections., image surface and large for a discontinuous urface.

Thus edge points can be detected by applying a thrcsh-
I)g,; l)etectioul old to the edge values. The threshold can be %aried.
The boundaries of objects in an image exist at loca- depending on the level of detail desired for edge
tions wihere tile image values change abruptlv. These extraction. The examples presented in this article use
abrupt changes can be detected by a spatial difference a threshold equal to I 1 of the dcynamic range of the
operator [2]. The design of such an operator depends edge values, i.e., (,,,, + 0.10(,I.. - ( ) The

closely oil the quality and complexity of the image, choice of the threshold. C:,ever, can be optimized
and on the desired level of feature extraction. The with respect to the histogram of thie edge values.
current application uses spatial gradient operators [31. B~cause of the spatial extent of the operator, the edge

The operator center is placed at an image location, values obtained after tile application of a threshold
and the result of tie convolution operation on the generally arc thickly populated near or at target

image values represents the local gradient at that ima- discontinuities. Thus a procedure for non-maxima
age location and in the operators direction. The edge suppression can be applied for the further thinning of
va\lue at the image location I (.x; y) can be expressed as these edges [4]. In the procedure, the edge value at a

point is set to icto if ithe value is not the local maxi-
= (;1 m;1um in the direction perpendicular to the edge direc-

tion. Figure 2 shows an example of the detected edge

where (;\ and (i are the image gradients in the hori- points superimposed over a gray-scaled image. The

zontal and vertical directions, respectively. The edge is edge points include the outline of the cones and the
in the gradient direction, which can be obtained as silhouette of the cylinder against the background.

-tan Line Identification

C;, After the edge points have been detected, they must

be associated with lines and curves. For simple closed
where 0 is measured with respect to the x-axis. contours, the ,edge points can be chain coded [51. and

Table 1. 5 x 5 Gradient Operators

x-Direction y-Direction

-2 -2 -2 -2 -2 -2 -1 0 1 2

-1 -1 -1 -1 -1 -2 -1 0 1 2

0 0 0 0 0 -2 -1 0 1 2

1 1 1 1 1 -2 -1 0 1 2

2 2 2 2 2 -2 -1 0 1 2
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the b curves of two points in .v- space will intersect
periodically in h-tI space, and the points of intersec-
tion (spaced r radians apart) will correspond to the
line defined by the two points in x-y space. Thus, if

the h curves of all edge points in an image are plotted

in h-0 space, the points at which the h curves intersect
will correspond to prominent lines in the image.

In practice, the h-0 space is divided into accumula-
tor cells, and the cell value of a particular cell is
increased by I each time a curve passes the cell's
location. Because the direction of each edge point is
known from the edge-detection process (discussed
earlier), only the portion of the h curve for angles

around that direction needs to be searched. A thresh-
old is chosen at the half-length (in pixels) of the
shortest line expected to be extracted from the image.
Only those accumulator cells whose cell values are
greater than the threshold are selected for further
investigation. The selected cells represent a set of lines

detected from the image.
For each detected line, a collection of points that

lie on the line is gathered from the edge points. TO
represent the location of a line in the overall image,
the mean of the collected points, i.e., the mean (x, y)
value, is used. For cases in which several line segments
from different image locations happen to be collinear,
the line segments will be represented by just single

FIGURE 2. Gray-scaled image with detected edge points, line values of hand 0. In such cases, additional lines-
with the same line values h and 0 but with different

the shape description can be performed with syntactic mean (x, y) values-are added to the line set to repre-
pattern grammars [6]. The current application con- sent the different line segments. The line set is exam-
siders images of complex objects comprising a combi- ined further to eliminate those lines which have mean
nation of shapes, from which broken edges and edges (x, y) values and h and 0 values that are close to other
inside other object boundaries are permitted. Thus a lines. The line set is then used as a set of seeds for
layered approach for shape formation is required, growing connected line segments with a relaxation

Hough transforms can be used to detect the lines process, as shown in Figure 4.
and curves in an image. In Figure 3(a), a line in two- During each iteration of the relaxation process,
dimensional (2-D) space is represented by the di- each edge point in the image is classified in associa-
rected orthogonal distance h to the origin and the tion with one of the detected lines. The edge point is
angle 0 that h forms with the x-axis. Any point (x, y) then added to the point collection of the associated
on the line will satisfy the following equation: line. When a point is not close enough to any of the

lines (the allowable orthogonal distance for point clas-
sification should be less than half the distance of the

The set of lines passing through a given point (x, y) closest distinctive feature lines in the image) or when
can be plotted in b-0 space. The result will be a the edge direction does not agree with the line direc-
sinusoidal curve, as shown in Figure 3(b). Note that tion (the allowable angular deviation should be less
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FIGURE 3. Hough transform for straight lines: (a) line defined in x-y coordinates and (b) Hough transform in h-0 space. A
line in two-dimensional (2-D) space can be represented by the directed orthogonal distance h to the origin and the angle fi
that h forms with the x-axis, as shown in part a. For any given point, the set of lines passing through that point can be plotted
in h-0 space. The result will be a sinusoidal curve, as shown in part b. Note that the h curves of two points in x-y space will
intersect periodically in h-O space. The points of intersection (spaced :r radians apart) correspond to the line defined by the
two points in x-y space.

than half the smallest angle formed by intersecting receiver LOS is usually nonzero. From geometry, the
lines in the image), the point is not classified. At the ratio of the minor and major axes of the projected
end of each iteration, the current classification is com- ellipse is the cosine of the aspect angle. The aspect
pared with the results of the previous iteration. If any angle, together with the projected body-axis orienta-
difference exists, the line set is recalculated from the tion, can be used to determine the body attitude with
current point collection and, with the updated line respect to the sensor in 3-D space. In extracting the
set, the point classification is reiterated. The relax- elliptical base, it is assumed that the straight bound-
ation process stops when the current classification has aries have already been identified. Thus the ellipse
not changed from the previous iteration. After the center will lie on the axis of symmetry of the shape.
relaxation process ceases, the lines are identified from For cylinders, the major axis of the base ellipse will be
the edge points, and the position and orientation of half the distance between the two parallel edges that
each line are calculated from the point collection with define the shape. For cones, the major axis will be the
a least-squares-error fit. This information is then used distance from one conical edge to the ellipse center.
for simple shape formation: parallel lines are identi- Thus the ellipse-extraction scheme first determines
fled for cylinders, and intersecting lines are chosen for the base center along the axis of symmetry of the
cones. Finally, the axis of symmetry is determined for shape and then fits an elliptical curve at the base
the position and projected orientation of each chosen region to estimate the minor axis.
shape. Figure 5(a) depicts a cone shape with an elliptical

base. The ellipse function with a coordinate rotation
C'urve Extraction fr is expressed by

The circular base of a cylinder or cone generally ap- (x
pears elliptical in angle-angle imagery because the (x - Xo)r + (y - Yo)- _ , (I)

aspect angle between the object body axis and the a
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values of a are plotted for all edge p<oints in tle bas•c
Line detection from region. The nlaxi alh' aclated cell ii Hoigh

Hough transformation rgol ai 'aCR~ac eli og
transform space will then determine a and the loca-

tion of (.V0, yo).
n In addition, the cdgzc detection of" a point on the

calculation/ ellipse curve should be consistent with the curve tan-

elimination gent derived by dicicrentiating Equation I , As tollows:

e' A-(. - ,q ), a2' (Y1,- ýPd,
tan( = ________ 1

E e o tt d y b'- (x - x,),
Edge-point

classification Thus each edge point is checked with respect to loca-ytion and edge orientation before being added to the
collection of points for an extracted curve. The mi-
nor-axis value is then refined from the best curve fit of

Any the collected points. The results of line and curve
fromge Yeidentification are shown and discussed in the follow-

previous ing section.
iteration?

Feature Extraction for Angle-Angle Images

For angle-angle imagery, targets are projected from
*No 3-D space to a plane perpendicular to the sensor

Group LOS, as shown in Figure 6. Thus spheres are pro-

parallel/ jected as circles, and the circular bases of cones and
intersecting lines cylinders become ellipses. In the images, the physical

radii of the circular forms of targets are generally
preserved without transformations: the major and

Shape minor axes of the elliptical projection are respectively
formation the circular radius itself and the radius with a cosa

factor, a being the aspect angle (i.e., the angle be-

FIGURE 4. Relaxation process for line identification. tween the target body axis and the sensor LOS). The
boundary lines of targets are projected into lines in

where (xY, _Y) represents the ellipse center on the axis images, but their dimensions are generally transformed
of symmetry having orientation Or, and a and b are with a factor of sint. With the use of such projection
the minor and major axes of the ellipse, respectively, relationships between target 3-D space and image
Equation I can be rewritten for the minor axis a: 2-I) space, the size, shape, and orientation of a target

can be inferred from its image features.
(x - x,)r I Two examples of simulated angle-angle images have

(Y - YO) been analyzed to demonstrate the extraction of target

-b features from such imagery. First, a simulated image
of a complex object is used for size and shape estima-

The above equation indicates that the minor axis of tion. Then a sequence of cone images is employed for
the ellipse is a function of the location of the ellipse motion extraction.
center (x. y,) along the axis of symmetry, as shown
in Figure 5(b). Thus the Hough transform space Size andShape Estimation

[a, (,n, _Y)] can be used for ellipse detection in which The model used in the example has a cylindrical main
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"(x2' Y2 ) (a) (b)
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x Location of (xo, yo) along the axis of symmetry

FIGURE 5. Elliptical Hough transform: (a) cone shape with elliptical base in x-y coordinates after a coordinate rotation O~r,
and (b) Hough transform in which a, the minor axis of the ellipse, is plotted on the vertical axis and the location of the ellipse
center (x0, yo) along the axis of symmetry is plotted on the horizontal axis. For a detailed description of the mathematics
involved, see the main text.

body with three cones mounted at the forward end. Sensor line Invisible
Figure 7(a) shows a simulated angle-angle image of of sight (occluded)
the object at a 500 aspect angle, and Figures 7(b), (c), (LOS) portion of D

and (d) show the results of a scene analysis that was object

performed with pixel sizes of 2, 8, and 20 cm, respec-

tively. For each of the scene-analysis images, the edge
points have been detected and lines identified. (Note: Z
The different lines are coded in different colors.) a
Ideally, two major parallel lines would be selected for
the cylindrical body, and three pairs of intersecting

lines would be chosen for the cones. Then an ellipti-
cal curve could be fitted for the cylindrical base to 1Dcosa
determine the aspect angle. Because the cylindrical 2

body is large compared to all three of the pixel sizes L sin____,_.__ __

used, the two parallel lines representing the shape are
easily discernible in Figures 7(b), (c), and (d). But the
cones, because of their smaller size, appear distorted
in the images, particularly in Figure 7(d). Nonethe-
less, the cones are recognizable at pixel sizes of 2 and
8 cm.

Figure 8 shows the quantitative results. For all pixel
sizes, the estimated cylinder radius (Figure 8[a]) agrees
well with the model. Estimations for the cone radius Angle

(Figure 8[b]) and projected cone angle (Figure 8[c])
are good for pixels smaller than 8 cm, and the aspect FIGURE 6. Geometry of angle-angle imagery of a cone.
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FIGURE 7. Size and shape extraction for a simulated object consisting of a cylindrical main body

with three cone-, ;icunted at the forward end: (a) angle-angle input image after edge detection,

(b) line classificairnr, at a pixel size of 2 cm, (c) line classification at a pixel size of 8 cm, and

(d) line classification at a pixel size of 20 cm.

angle obtained from the elliptical-curve fit (Figure ratio for the target at the receiver.
8[d]) is also in agreement with the model for pixels

smaller than 8 cm.
In general, curve fitting requires finer image qual- Target motion can be used to aid the target-classifica-

itv than line fitting. Lines can usually be detected tion process, as has been demonstrated in range-Dop-
within one pixel to thle true edge. The pixel size, pler imagery from millimeter-wave (MMW) and other

which represents the sampling size at the image focal microwave radars. With a time series of target atti-
plane, is determined by the type of focal plane and tudes extracted from such imagery, target motion can

the angular resolution, tte diffraction or resolution be inferred. The observation generally is more straight-
limit of the imaging system, and the signal-to-noise forward in a time series of high-resolution images.
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FIGURE 8. Feature-extraction performance at various pixel sizes for the simulated model of
FigureT7 (a) calculated base radius of the model, (b) calculated base radius of a cone, (c) calculated
half-cone angle of a cone, and (d) calculated aspect angle of the model. (Note: For compar'ison, the
input values used in the simulation are indicated with straight lines.)

iFor purposes of demonstration, a free-body spin- Sensor line zTarget boyaxis
precession motion is considered. Figure 9 shows a of sight, I/ Lbd
coordinate system with a spinning target and the (LOS) •
body axis of the target precessing around the z-axis. '01" / I

The parameters Op, op, and p represent the precession P 0i) I

0)v

half-cone angle, the precessing azimuthal angle, and• I Tret

the angle between the LOS and the z-axis, respec-
tively. Suppose that p and 0p are constant during an
observation. Then the aspect angle a• between the Y
body axis and the LOS will be a function of op. For p y

in the z-x plane,

cosac = sin p sino0 coso0 + cos pcos 0p (2) CP \P P

If cosa can be estimated for different values of op,
then Equation 2 can be used to solve for the coeffi- XO

c i e n t s s i n p s i n O P a n d c o s p c o s O p. T h e s u m a n d d i f - F G R 9 e m t y o t r e t a s s i n n a o t hference of these coefficients are cos(p - 0 P) and FIORg demtyo target body axis andpinnsing (about the zai)sml
cos(p + OP ), respectively, and, from these two quanti- targetousy. Tharamter)O and opssn represet the z-axis)siu-
ties, p and 0 P can be obtained. sion half-cone angle and the precessing azimuthal angle,

The target projected orientation 00 in angle-angle respectively, and at and p represent the aspect angle and
images is also a function of op: mean aspect angle, respectively.
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FIGURE 10. Feature extraction for angle-angle images of a simulated spinning triconic body undergoing precessional
motion: (a) input images, (b) edge extraction, (c) fitted data for cosa, and (d) fitted data for tan (0. The rotation rate chosen
was 80°/sec, Op was 16', the precession rate for op was 10°/sec, and p was 90'. The images were simulated with a 2-cm pixel
size and a 2-sec frame time (i.e., a 2-sec interval between frames), with 19 frames generated over a complete precessional
cycle.

Invisible (occluded) 41Df, sin aD

portion of object "ce

7 G)

Z" 0 0

Sensor line of sight (LOS) 0
Doppler

FIGURE 11. Geometry of range-Doppler radar imagery of a spinning cone.
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smensions and orientations are then determined from
tan 0) = • s si P (3) the range and l)oppler extents of a sequence of the

cos p sin 1 p os )p - sin p Cos Op images.

At broadside viewing (p = 90'), Equation 3 reduces to
tan0 ) = -tandpsinip. Similar to the case of aspect-
angle data, the orientation data can also be fitted with For the cone-shaped target of Figure 11, the range
Equation 3 to determine p and 1p and Doppler extents are related to the target aspect

As an example, a series of simulated angle-angle angle t and the rotation rateJ by'
images has been generated for a spinning triconic R dr = L cos1 (4)

body undergoing precessional motion (Figure 10[a]).
The rotation rate chosen was 80'/sec, op was 16', the and
precession rate for 0, was 10°/sec, and p was 90'. V" di, = 4. Df sin 1, (5)
(Note: The LOS was assumed to be outside the pre-
cession cone.) The images were simulated with a where R and Vare the range and Doppler extents
2-cm pixel size and a 2-sec frame time (i.e., a 2-sec (number of image pixels), drand dt, are the range and
interval between frames), with 19 frames generated Doppler cell sizes, and L and Dare the target physical
over a complete precessional cycle. The triconic bound- length and base diameter, respectively. Combining
aries were identified by computer for each image the two equations to eliminate functions of the aspect
frame (Figure 10[b]) so that the aspect angle a and angle gives the following ellipse equation for a rigid
orientation 0() could be determined. Fitting these angles target undergoing steady rotation with constant L, D.
to Equations 2 and 3 then allows p and (4p to be and :
obtained. For the aspect-angle history, Figure 10(c)
shows that the best fit occurs for p = 91.40 and
0(p = 15.4'. For the image-plane body-axis orientation L 4:rD=
(given p = 90'), Figure 10(d) shows that the best fit
occurs for 0(p = 160. The major and minor axes of the above ellipse can

be estimated for a dataset of(R, V) pairs by the least-
Feature Extraction for Range-Doppler Images squares-error method. The physical length L and the
For range-Doppler radars, targets with angular dy- Doppler velocity car thus be calculated by
namics are imaged along the radar LOS in the two
dimensions of range and Doppler. The projection of R 4 V 4  (R2V2)_
L, the length of a target measured along its body axis, L R , __

onto the LOS is L cosa in the range dimension, R -v4 _VR_ d2
with a being the aspect angle, as shown in Figure 11.
In the case of a rotating target, the rotational angular and
velocity Vprojected onto the LOS is measured in the
Doppler dimension as Vsina [7]. With these rela- 4 4 _ 2V2-

tionships, the dimensions of a target can be derived 4,Df = R (RV dv.
from its image range and Doppler extents. R4 V 2  R 2 R2 V 2

Application of this technique is demonstrated in
this section with an example of simulated range-Dop- For cases in which the rotation frequency / is
pier images of a diffuse cone. In the example, image known, the base diameter D can also be determined
processing and scene analysis are applied, as has been from the Doppler velocity. Theoretically, the above
demonstrated earlier for angle-angle imagery. A target derivation can be performed for any dataset with
line model is th, n used to guide the formation of a more than two pairs of (R, V) measurements, pro-
target line repres-ntation in the imagery. Target di- vided that the data noise or measurement errors are
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FIGURE 12. Simulated range-Doppler image of a cone: (top) before process-

ing and (bottom) after edge points have been detected and lines fitted. The

color bar indicates increasing (from black to white) radar cross section.
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much less than the true data difference corresponding
to different aspect angles. For a large dataset, the
measurements of range and Doppler extents can be 140
median filtered separately to remove noise (while still
retaining the temporal trend resulting from changing E.

aspect angles). 120
With both L and Df derived from a given dataset, X

the target aspect-angle history can be obtained from
either Equation 4 or 5, or from the ratio of the two CK
equations. It should not matter which equation is 100
used to obtain the aspect angle because both of the
equations were used to derive Equation 6, which was
used to estimate both L and Df. More precise results,
however, may be obtained by using the equation cor- 10 20 30

responding to better cell resolution. (a)

Motion Eytraction for a Simulated Cone 80

For purposes of demonstration, range-Doppler im-
ages have been simulated for a cone (length of 150 cm
and a base radius of 19.7 cm) having a diffuse target u" 70

ag
surface. A total of 280 images was generated over Y
28 sec with the cone undergoing spin (spin period of

4.5 sec) and precession [8]. Each image was 53 x 53 C

pixels, with a range cell representing 5 cm and a a)
Doppler cell representing 2.93 cm/sec. Figure 12 (top) -•

shows one of the range-Doppler image frames. 0
Image processing, edge detection, and line fitting 50

were then performed on the images. For the simple
known target shapes in the current application, the
line fitting was simplified with a piecewise linear fit- 0 10 20 30
ting of the target boundaries: the edges at the base Time (sec)
were collected and fitted linearly, and the cone was (b)
defined by two lines fitting the cone edges and the FIGURE 13. The extracted (a) range and (b) Doppler ex-
base line. Range and Doppler extents of the target tents from a sequence of simulated images (see Figure

could then be estimated from the target line model. 12).

Figure 12 (bottom) shows a frame of the image with
the edge points detected and the lines fitted. For such present in the imagery, the range and Doppler histo-
figures, the bisection line of the cone is the target- ries show functions of cosa and sina, respectively, for
body centerline, the distance from the nose to the the aspect angle a, which changes because of the
base center in range is the target range extent, and the precession of the target. Target dimensions can be
Doppler spread between the intersections of the base obtained by the elliptical fitting of the range and
line and the cone's left and right sides is the Doppler Doppler data, as described earlier in the subsection
extent. "Estimation of Target Dimensions." With such tech-

Figure 13 contains plots of the extracted range and niques, a value of 153.5 cm was calculated for the
Doppler extents from the image sequence. Note that, target length, and 17.3 cm for the base radius. Note
in spite of the considerable amount of local noise that the derived target dimensions agree well with the
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F For simple known targets, the feature-extraction

4.5-sec running process can be simplified greatly by obtaining the

average target inmage description with a piecewise linear ap-
proximation of the target bounda, its. For casL.s in

-o Iwhich some size/shape parameters such as cone half-

Sangle, length, and/or base diameter are available, the
o 40 target size and aspect angle can be estimated from

"]0a data extracted for each frame of range-Doppler im-
0.

I. ages. Convergence of such estimations over multiple

30 framnes of images can then be used to evaluate the
algorithmn performance and to verify measurements

for the known target.
i IThe algorithm is undergoing extensive testing with

0 10 20 30 simulated and field data, and both the precision and
Time (sec) efficiency of the algorithm are expected to improve

FIGURE 14. Aspect-angle history derived from the Doppler over time. Preparation for real-time implementation
extents (see Figure 13[b]). of the range-Doppler algorithm is currently in progress.
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Summary

The extraction of target features-shape, size, orien-

tation, and dynamics-from both angle-angle and
range-Doppler images has been demonstrated. The

target shape, size and orientation can be determined
from single-frame angle-angle images, and the target

angular dynamics can be estimated from a time series
of such images. For the case of range-Doppler imag-

ery, multiple frames of images are required to obtain
multiple measurements of range and Doppler extents
to enable the derivation of the target dimensions. A

time series of range-Doppler images can also be used
to estimate the target angular dynamics.
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